CraHandle.cs
21.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
using System.Numerics;
using System.Text;
using Rcs.Domain.Entities;
using Rcs.Domain.ValueObjects;
namespace Rcs.Shared.Utils
{
public static class CraHandle
{
/// <summary>
/// 切向角度阈值。
/// </summary>
public static double TangentAngleThresholdRad { get; set; } = AngleConstants.AllowedDeviationTheta;
/// <summary>
/// 计算圆弧中点坐标
/// </summary>
/// <param name="startX">起点X坐标</param>
/// <param name="startY">起点Y坐标</param>
/// <param name="endX">终点X坐标</param>
/// <param name="endY">终点Y坐标</param>
/// <param name="centerX">圆心X坐标</param>
/// <param name="centerY">圆心Y坐标</param>
/// <returns>中点坐标 (x, y)</returns>
public static (double x, double y) GetArcMidPoint(
double startX, double startY,
double endX, double endY,
double centerX, double centerY)
{
// 计算起点和终点相对于圆心的极角
double thetaStart = Math.Atan2(startY - centerY, startX - centerX);
double thetaEnd = Math.Atan2(endY - centerY, endX - centerX);
// 确保角度按顺时针或逆时针方向正确
double deltaTheta = thetaEnd - thetaStart;
// 调整角度范围到 [-π, π]
if (deltaTheta > Math.PI)
deltaTheta -= 2 * Math.PI;
else if (deltaTheta < -Math.PI)
deltaTheta += 2 * Math.PI;
// 中点角
double thetaMid = thetaStart + deltaTheta / 2;
// 半径
double r = Math.Sqrt((startX - centerX) * (startX - centerX) +
(startY - centerY) * (startY - centerY));
// 计算中点坐标
double midX = centerX + r * Math.Cos(thetaMid);
double midY = centerY + r * Math.Sin(thetaMid);
return (midX, midY);
}
public static Vector2 GetCircleCenter(Vector2 P0, Vector2 P1, Vector2 P2)
{
float x0 = P0.X, y0 = P0.Y;
float x1 = P1.X, y1 = P1.Y;
float x2 = P2.X, y2 = P2.Y;
float midX01 = (x0 + x1) / 2;
float midY01 = (y0 + y1) / 2;
float midX12 = (x1 + x2) / 2;
float midY12 = (y1 + y2) / 2;
float k01 = (x1 - x0) != 0 ? (y1 - y0) / (x1 - x0) : float.NaN;
float k12 = (x2 - x1) != 0 ? (y2 - y1) / (x2 - x1) : float.NaN;
float cx, cy;
if (float.IsNaN(k01)) // P0P1 垂直
{
cx = midX01;
float k12_perp = (k12 != 0) ? -1 / k12 : float.NaN;
cy = float.IsNaN(k12_perp) ? midY12 : k12_perp * (cx - midX12) + midY12;
}
else if (float.IsNaN(k12)) // P1P2 垂直
{
cx = midX12;
float k01_perp = (k01 != 0) ? -1 / k01 : float.NaN;
cy = float.IsNaN(k01_perp) ? midY01 : k01_perp * (cx - midX01) + midY01;
}
else
{
float k01_perp = (k01 != 0) ? -1 / k01 : float.NaN;
float k12_perp = (k12 != 0) ? -1 / k12 : float.NaN;
cx = (k01_perp * midX01 - k12_perp * midX12 + midY12 - midY01) / (k01_perp - k12_perp);
cy = k01_perp * (cx - midX01) + midY01;
}
return new Vector2(cx, cy);
}
/// <summary>
/// 圆弧上三点计算起点切线向量
/// </summary>
/// <param name="P0"></param>
/// <param name="P1"></param>
/// <param name="P2"></param>
/// <returns></returns>
public static Vector2 GetOnlineTangentAtStart(Vector2 P0, Vector2 P1, Vector2 P2)
{
Vector2 center = GetCircleCenter(P0, P1, P2);
return GetTangentAtStart(P0, P2, center);
}
/// <summary>
/// 起点(0,1)、终点(1,0)、圆心(1,1)的圆弧起点切线向量
/// </summary>
public static Vector2 GetTangentAtStart(Vector2 P0, Vector2 P1, Vector2 center)
{
Vector2 radiusVec = P0 - center;
// 判断圆弧方向:使用叉积判断P0->P1->center的转向
Vector2 vec1 = P1 - P0; //(1,-1)
Vector2 vec2 = center - P1; //(0,1)
float crossProduct = vec1.X * vec2.Y - vec1.Y * vec2.X;
Vector2 tangent;
if (crossProduct > 0)// 逆时针
{
tangent = new Vector2(-radiusVec.Y, radiusVec.X);
}
else
{
tangent = new Vector2(radiusVec.Y, -radiusVec.X);
}
tangent = Vector2.Normalize(tangent);
return tangent;
}
/// <summary>
/// 起点、终点、圆心的圆弧终点切线向量
/// </summary>
public static Vector2 GetTangentAtEnd(Vector2 P0, Vector2 P1, Vector2 center)
{
Vector2 radiusVec = P1 - center;
// 判断圆弧方向:使用叉积判断P0->P1->center的转向
Vector2 vec1 = P1 - P0;
Vector2 vec2 = center - P1;
float crossProduct = vec1.X * vec2.Y - vec1.Y * vec2.X;
Vector2 tangent;
if (crossProduct > 0)
{
tangent = new Vector2(radiusVec.Y, -radiusVec.X);
}
else
{
tangent = new Vector2(-radiusVec.Y, radiusVec.X);
}
tangent = Vector2.Normalize(tangent);
return tangent;
}
/// <summary>
/// 圆弧上三点计算终点切线向量
/// </summary>
public static Vector2 GetOnlineTangentAtEnd(Vector2 P0, Vector2 P1, Vector2 P2)
{
Vector2 center = GetCircleCenter(P0, P1, P2);
return GetTangentAtEnd(P0, P2, center);
}
/// <summary>
/// 获取边在指定节点的“进入方向向量”。
/// </summary>
public static Vector2 GetArrivalVector(MapEdge edge, Guid nodeId)
{
var pts = edge.ControlPoints;
if (!edge.IsCurve)
{
var from = new Vector2((float)edge.MapNodesFromNode.X, (float)edge.MapNodesFromNode.Y);
var to = new Vector2((float)edge.MapNodesToNode.X, (float)edge.MapNodesToNode.Y);
return Vector2.Normalize(nodeId == edge.FromNode ? from - to : to - from);
}
if (nodeId == edge.FromNode)
return GetTangentAtStart(
new Vector2((float)pts[0].X, (float)pts[0].Y),
new Vector2((float)pts[1].X, (float)pts[1].Y),
new Vector2((float)pts[pts.Count - 1].X, (float)pts[pts.Count - 1].Y));
else
{
return GetTangentAtEnd(
new Vector2((float)pts[0].X, (float)pts[0].Y),
new Vector2((float)pts[1].X, (float)pts[1].Y),
new Vector2((float)pts[pts.Count - 1].X, (float)pts[pts.Count - 1].Y)
);
}
}
/// <summary>
/// 获取边在指定节点的“出发方向向量”。
/// </summary>
public static Vector2 GetDepartureVector(MapEdge edge, Guid nodeId)
{
if (!edge.IsCurve)
{
var from = new Vector2((float)edge.MapNodesFromNode.X, (float)edge.MapNodesFromNode.Y);
var to = new Vector2((float)edge.MapNodesToNode.X, (float)edge.MapNodesToNode.Y);
return Vector2.Normalize(nodeId == edge.FromNode ? to - from : from - to);
}
var pts = edge.ControlPoints;
if (nodeId == edge.FromNode)
return GetTangentAtStart(
new Vector2((float)pts[0].X, (float)pts[0].Y),
new Vector2((float)pts[1].X, (float)pts[1].Y),
new Vector2((float)pts[pts.Count - 1].X, (float)pts[pts.Count - 1].Y));
else
{
return GetTangentAtEnd(
new Vector2((float)pts[0].X, (float)pts[0].Y),
new Vector2((float)pts[1].X, (float)pts[1].Y),
new Vector2((float)pts[pts.Count - 1].X, (float)pts[pts.Count - 1].Y)
);
}
}
/// <summary>
/// 计算两个向量的夹角(弧度)。
/// </summary>
public static double AngleBetween(Vector2 a, Vector2 b)
{
double dot = Vector2.Dot(a, b);
double len = a.Length() * b.Length();
if (len == 0) return 0;
double cos = Math.Clamp(dot / len, -1, 1);
return Math.Acos(cos);
}
/// <summary>
/// 检查两个方向向量是否相切(考虑倒车/前进模式)
/// </summary>
/// <param name="vehicleDirection">车辆方向向量</param>
/// <param name="pathDirection">路径切线方向向量</param>
/// <param name="isReverse">是否为倒车路径</param>
/// <returns></returns>
public static bool IsTangentCompatible(Vector2 vehicleDirection, Vector2 pathDirection, Vector2? prevDirection, bool isReverse = false)
{
// 路径夹角
var angle = prevDirection.HasValue ? AngleBetween(prevDirection.Value, pathDirection)
: 0;
// 车辆行驶方向与路径夹角
var angleAgv = AngleBetween(vehicleDirection, pathDirection);
var IsTangentAgv = !isReverse ? angleAgv < TangentAngleThresholdRad
: Math.PI - TangentAngleThresholdRad < angleAgv && angleAgv <= Math.PI;
return (angle <= TangentAngleThresholdRad || Math.Abs(Math.PI- angle) <= TangentAngleThresholdRad)
&& IsTangentAgv;
}
public static double GetEdgeHeading(MapEdge edge, Guid fromNodeId)
{
var vec = GetDepartureVector(edge, fromNodeId);
return Math.Atan2(vec.Y, vec.X);
}
/// <summary>
/// 计算车体在边上的实际航向角,考虑当前车体朝向和倒车模式
/// </summary>
/// <param name="edge">路径边</param>
/// <param name="fromNodeId">起始节点ID</param>
/// <param name="currentVehicleHeading">当前车体航向角(弧度)</param>
/// <returns>车体在该边上的实际航向角</returns>
public static double GetVehicleHeadingOnEdge(MapEdge edge, Guid fromNodeId, double currentVehicleHeading)
{
if (!edge.IsCurve)
{
// 车体朝向保持不变(车体不转向,只是沿路径反向移动)
return currentVehicleHeading;
}
else
{
// 弧线:车体航向需要根据弧线的转角进行调整
var arcRotation = GetArcRotationAngle(edge, fromNodeId);
return currentVehicleHeading + arcRotation;
}
}
/// <summary>
/// 计算弧线的转角(从起点到终点的角度变化)
/// </summary>
/// <param name="edge">弧线边</param>
/// <param name="fromNodeId">起始节点ID</param>
/// <returns>转角(弧度),正值表示逆时针,负值表示顺时针</returns>
public static double GetArcRotationAngle(MapEdge edge, Guid fromNodeId)
{
if (!edge.IsCurve)
return 0; // 直线没有转角
var pts = edge.ControlPoints;
if (pts == null || pts.Count < 3)
return 0;
var P0 = new Vector2((float)pts[0].X, (float)pts[0].Y);
var P1 = new Vector2((float)pts[1].X, (float)pts[1].Y);
var center = new Vector2((float)pts[2].X, (float)pts[2].Y);
// 计算起点和终点相对于圆心的角度
var startAngle = Math.Atan2(P0.Y - center.Y, P0.X - center.X);
var endAngle = Math.Atan2(P1.Y - center.Y, P1.X - center.X);
// 计算角度差
var deltaAngle = endAngle - startAngle;
// 标准化角度到 [-π, π] 范围
while (deltaAngle > Math.PI) deltaAngle -= 2 * Math.PI;
while (deltaAngle < -Math.PI) deltaAngle += 2 * Math.PI;
// 根据fromNodeId确定方向
if (fromNodeId == edge.FromNode)
{
// 从起点到终点
return deltaAngle;
}
else
{
// 从终点到起点(反向)
return -deltaAngle;
}
}
/// <summary>
/// 计算圆弧NURBS控制点、权重和节点向量
/// 使用三次NURBS(4个控制点)确保精确表示任意角度的圆弧
/// </summary>
/// <param name="points">圆弧参数列表:points[0]=start, points[1]=end, points[2]=center</param>
public static void CalculateArc(List<Vector2> points,
out List<Point> controlPointsStr,
out List<double> weightsStr,
out List<double> knotsStr)
{
if (points == null || points.Count < 3)
throw new ArgumentException("points列表必须包含至少3个元素:start, end, center");
Vector2 start = points[0];
Vector2 end = points[1];
Vector2 center = points[2];
float R = Vector2.Distance(start, center);
double thetaStart = Math.Atan2(start.Y - center.Y, start.X - center.X);
double thetaEnd = Math.Atan2(end.Y - center.Y, end.X - center.X);
double deltaTheta = thetaEnd - thetaStart;
// 标准化到 [-π, π]
while (deltaTheta > Math.PI) deltaTheta -= 2 * Math.PI;
while (deltaTheta < -Math.PI) deltaTheta += 2 * Math.PI;
Vector2[] controlPoints;
double[] weights;
double[] knots;
// 使用三次NURBS - 4个控制点,适合AGV路径规划
controlPoints = new Vector2[4];
weights = new double[4];
knots = new double[8];
// 行驶方向(正值为逆时针,负值为顺时针)
bool isCCW = deltaTheta > 0;
// 计算切线方向(与行驶方向一致)
Vector2 rs = start - center;
Vector2 re = end - center;
Vector2 startTangent = isCCW
? new Vector2(-rs.Y, rs.X) // 逆时针:半径左转90°
: new Vector2(rs.Y, -rs.X); // 顺时针:半径右转90°
Vector2 endTangent = isCCW
? new Vector2(-re.Y, re.X)
: new Vector2(re.Y, -re.X);
// 标准化切线向量
startTangent = Vector2.Normalize(startTangent);
endTangent = Vector2.Normalize(endTangent);
// 计算控制点:起点、两个内部控制点、终点
// 使用经典三次贝塞尔圆弧近似:k = 4/3 * tan(|Δθ|/4)
float controlDistance = (float)((4.0 / 3.0) * Math.Tan(Math.Abs(deltaTheta) / 4.0) * R);
controlPoints[0] = start;
controlPoints[1] = start + startTangent * controlDistance;
controlPoints[2] = end - endTangent * controlDistance;
controlPoints[3] = end;
// 权重:使用精确的NURBS圆弧权重
double cosHalfAngle = Math.Cos(Math.Abs(deltaTheta) / 4.0);
weights[0] = 1.0;
weights[1] = cosHalfAngle;
weights[2] = cosHalfAngle;
weights[3] = 1.0;
// 节点向量:三次NURBS标准配置
knots = new double[] { 0, 0, 0, 0, 1, 1, 1, 1 };
// 序列化为字符串
controlPointsStr = SerializeVectorArray(controlPoints);
weightsStr = weights.ToList();
knotsStr = knots.ToList();
}
/// <summary>
/// 生成“前进”方向的三次贝塞尔曲线控制点,用于AGV前进不自旋的轨迹表达。
/// 输入 points: [0]=start, [1]=end, [2]=center(圆弧弧心)。
/// 输出为4个控制点(起点、两个控制点、终点)。
/// </summary>
public static void CalculateForwardBezier(List<Vector2> points,
out List<Point> controlPointsStr,
out List<double> weightsStr,
out List<double> knotsStr)
{
if (points == null || points.Count < 3)
throw new ArgumentException("points列表必须包含至少3个元素:start, end, center");
Vector2 start = points[0];
Vector2 end = points[1];
Vector2 center = points[2];
float R = Vector2.Distance(start, center);
if (R <= 0)
{
// 退化处理:返回直线贝塞尔
Vector2 c1 = start + (end - start) / 3f;
Vector2 c2 = start + 2f * (end - start) / 3f;
controlPointsStr = SerializeVectorArray(new[] { start, c1, c2, end });
weightsStr = new List<double> { 1.0, 1.0, 1.0, 1.0 };
knotsStr = new List<double> { 0, 0, 0, 0, 1, 1, 1, 1 };
return;
}
double thetaStart = Math.Atan2(start.Y - center.Y, start.X - center.X);
double thetaEnd = Math.Atan2(end.Y - center.Y, end.X - center.X);
double deltaTheta = thetaEnd - thetaStart;
while (deltaTheta > Math.PI) deltaTheta -= 2 * Math.PI;
while (deltaTheta < -Math.PI) deltaTheta += 2 * Math.PI;
if (Math.Abs(deltaTheta) < 1e-9)
{
// 近似直线
Vector2 c1 = start + (end - start) / 3f;
Vector2 c2 = start + 2f * (end - start) / 3f;
controlPointsStr = SerializeVectorArray(new[] { start, c1, c2, end });
weightsStr = new List<double> { 1.0, 1.0, 1.0, 1.0 };
knotsStr = new List<double> { 0, 0, 0, 0, 1, 1, 1, 1 };
return;
}
bool isCCW = deltaTheta > 0;
Vector2 rs = start - center;
Vector2 re = end - center;
Vector2 t0 = isCCW ? new Vector2(-rs.Y, rs.X) : new Vector2(rs.Y, -rs.X);
Vector2 t1 = isCCW ? new Vector2(-re.Y, re.X) : new Vector2(re.Y, -re.X);
t0 = Vector2.Normalize(t0);
t1 = Vector2.Normalize(t1);
float kR = (float)((4.0 / 3.0) * Math.Tan(Math.Abs(deltaTheta) / 4.0) * R);
Vector2 p0 = start;
Vector2 p1 = start + t0 * kR;
Vector2 p2 = end - t1 * kR;
Vector2 p3 = end;
controlPointsStr = SerializeVectorArray(new[] { p0, p1, p2, p3 });
double cosHalfAngle = Math.Cos(Math.Abs(deltaTheta) / 4.0);
weightsStr = new List<double> { 1.0, cosHalfAngle, cosHalfAngle, 1.0 };
knotsStr = new List<double> { 0, 0, 0, 0, 1, 1, 1, 1 };
}
/// <summary>
/// 统一接口:根据是否倒车选择前进(不自旋)或倒车(原NURBS弧)表达。
/// points: [0]=start, [1]=end, [2]=center
/// </summary>
/// <param name="points">start, end, center</param>
/// <param name="isReverse">true=倒车,false=前进</param>
/// <param name="controlPointsStr">输出:控制点(4个)</param>
/// <param name="weightsStr">输出:权重</param>
/// <param name="knotsStr">输出:节点向量</param>
public static void CalculateBezierForMotion(List<Vector2> points,
bool isReverse,
out List<Point> controlPointsStr,
out List<double> weightsStr,
out List<double> knotsStr)
{
if (isReverse)
{
// 倒车:使用圆弧NURBS表达(车辆方向不变,沿路径反向移动)
CalculateArc(points, out controlPointsStr, out weightsStr, out knotsStr);
}
else
{
// 前进:使用前进方向的三次贝塞尔表达,避免不必要自旋
CalculateForwardBezier(points, out controlPointsStr, out weightsStr, out knotsStr);
}
}
private static List<Point> SerializeVectorArray(Vector2[] arr)
{
var ps = new List<Point>();
for (int i = 0; i < arr.Length; i++)
{
Point point = new Point();
point.X = arr[i].X;
point.Y = arr[i].Y;
ps.Add(point);
}
return ps;
}
private static string SerializeDoubleArray(double[] arr)
{
StringBuilder sb = new StringBuilder();
sb.Append("[");
for (int i = 0; i < arr.Length; i++)
{
sb.AppendFormat("{0:F6}", arr[i]);
if (i < arr.Length - 1) sb.Append(", ");
}
sb.Append("]");
return sb.ToString();
}
}
}