mem.c
23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/**
* @file
* Dynamic memory manager
*
* This is a lightweight replacement for the standard C library malloc().
*
* If you want to use the standard C library malloc() instead, define
* MEM_LIBC_MALLOC to 1 in your lwipopts.h
*
* To let mem_malloc() use pools (prevents fragmentation and is much faster than
* a heap but might waste some memory), define MEM_USE_POOLS to 1, define
* MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
* of pools like this (more pools can be added between _START and _END):
*
* Define three pools with sizes 256, 512, and 1512 bytes
* LWIP_MALLOC_MEMPOOL_START
* LWIP_MALLOC_MEMPOOL(20, 256)
* LWIP_MALLOC_MEMPOOL(10, 512)
* LWIP_MALLOC_MEMPOOL(5, 1512)
* LWIP_MALLOC_MEMPOOL_END
*/
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
* Simon Goldschmidt
*
*/
#include "lwip/opt.h"
#if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/lwip_sys.h"
#include "lwip/stats.h"
#include "lwip/err.h"
#include <string.h>
#if MEM_USE_POOLS
/* lwIP head implemented with different sized pools */
/**
* Allocate memory: determine the smallest pool that is big enough
* to contain an element of 'size' and get an element from that pool.
*
* @param size the size in bytes of the memory needed
* @return a pointer to the allocated memory or NULL if the pool is empty
*/
void *
mem_malloc(mem_size_t size)
{
void *ret;
struct memp_malloc_helper *element;
memp_t poolnr;
mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
#if MEM_USE_POOLS_TRY_BIGGER_POOL
again:
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
/* is this pool big enough to hold an element of the required size
plus a struct memp_malloc_helper that saves the pool this element came from? */
if (required_size <= memp_sizes[poolnr]) {
break;
}
}
if (poolnr > MEMP_POOL_LAST) {
LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
return NULL;
}
element = (struct memp_malloc_helper*)memp_malloc(poolnr);
if (element == NULL) {
/* No need to DEBUGF or ASSERT: This error is already
taken care of in memp.c */
#if MEM_USE_POOLS_TRY_BIGGER_POOL
/** Try a bigger pool if this one is empty! */
if (poolnr < MEMP_POOL_LAST) {
poolnr++;
goto again;
}
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
return NULL;
}
/* save the pool number this element came from */
element->poolnr = poolnr;
/* and return a pointer to the memory directly after the struct memp_malloc_helper */
ret = (u8_t*)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
return ret;
}
/**
* Free memory previously allocated by mem_malloc. Loads the pool number
* and calls memp_free with that pool number to put the element back into
* its pool
*
* @param rmem the memory element to free
*/
void
mem_free(void *rmem)
{
struct memp_malloc_helper *hmem;
LWIP_ASSERT("rmem != NULL", (rmem != NULL));
LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
/* get the original struct memp_malloc_helper */
hmem = (struct memp_malloc_helper*)(void*)((u8_t*)rmem - LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)));
LWIP_ASSERT("hmem != NULL", (hmem != NULL));
LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
/* and put it in the pool we saved earlier */
memp_free(hmem->poolnr, hmem);
}
#else /* MEM_USE_POOLS */
/* lwIP replacement for your libc malloc() */
/**
* The heap is made up as a list of structs of this type.
* This does not have to be aligned since for getting its size,
* we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes.
*/
struct mem {
/** index (-> ram[next]) of the next struct */
mem_size_t next;
/** index (-> ram[prev]) of the previous struct */
mem_size_t prev;
/** 1: this area is used; 0: this area is unused */
u8_t used;
};
/** All allocated blocks will be MIN_SIZE bytes big, at least!
* MIN_SIZE can be overridden to suit your needs. Smaller values save space,
* larger values could prevent too small blocks to fragment the RAM too much. */
#ifndef MIN_SIZE
#define MIN_SIZE 12
#endif /* MIN_SIZE */
/* some alignment macros: we define them here for better source code layout */
#define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
#define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
#define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
/** If you want to relocate the heap to external memory, simply define
* LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
* If so, make sure the memory at that location is big enough (see below on
* how that space is calculated). */
#ifndef LWIP_RAM_HEAP_POINTER
/** the heap. we need one struct mem at the end and some room for alignment */
//u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT];
u8_t *ram_heap; //ram_heap采用ALIENTEK进行分配,分配过程在mem_init中
#define LWIP_RAM_HEAP_POINTER ram_heap
#endif /* LWIP_RAM_HEAP_POINTER */
/** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
static u8_t *ram;
/** the last entry, always unused! */
static struct mem *ram_end;
/** pointer to the lowest free block, this is used for faster search */
static struct mem *lfree;
/** concurrent access protection */
#if !NO_SYS
static sys_mutex_t mem_mutex;
#endif
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
static volatile u8_t mem_free_count;
/* Allow mem_free from other (e.g. interrupt) context */
#define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free)
#define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free)
#define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free)
#define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
#define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc)
#define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc)
#else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
/* Protect the heap only by using a semaphore */
#define LWIP_MEM_FREE_DECL_PROTECT()
#define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex)
#define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex)
/* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */
#define LWIP_MEM_ALLOC_DECL_PROTECT()
#define LWIP_MEM_ALLOC_PROTECT()
#define LWIP_MEM_ALLOC_UNPROTECT()
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
/**
* "Plug holes" by combining adjacent empty struct mems.
* After this function is through, there should not exist
* one empty struct mem pointing to another empty struct mem.
*
* @param mem this points to a struct mem which just has been freed
* @internal this function is only called by mem_free() and mem_trim()
*
* This assumes access to the heap is protected by the calling function
* already.
*/
static void
plug_holes(struct mem *mem)
{
struct mem *nmem;
struct mem *pmem;
LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
/* plug hole forward */
LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
nmem = (struct mem *)(void *)&ram[mem->next];
if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
/* if mem->next is unused and not end of ram, combine mem and mem->next */
if (lfree == nmem) {
lfree = mem;
}
mem->next = nmem->next;
((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram);
}
/* plug hole backward */
pmem = (struct mem *)(void *)&ram[mem->prev];
if (pmem != mem && pmem->used == 0) {
/* if mem->prev is unused, combine mem and mem->prev */
if (lfree == mem) {
lfree = pmem;
}
pmem->next = mem->next;
((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram);
}
}
/**
* Zero the heap and initialize start, end and lowest-free
*/
void
mem_init(void)
{
struct mem *mem;
LWIP_ASSERT("Sanity check alignment",
(SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0);
/* align the heap */
ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
/* initialize the start of the heap */
mem = (struct mem *)(void *)ram;
mem->next = MEM_SIZE_ALIGNED;
mem->prev = 0;
mem->used = 0;
/* initialize the end of the heap */
ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED];
ram_end->used = 1;
ram_end->next = MEM_SIZE_ALIGNED;
ram_end->prev = MEM_SIZE_ALIGNED;
/* initialize the lowest-free pointer to the start of the heap */
lfree = (struct mem *)(void *)ram;
MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
if(sys_mutex_new(&mem_mutex) != ERR_OK) {
LWIP_ASSERT("failed to create mem_mutex", 0);
}
}
/**
* Put a struct mem back on the heap
*
* @param rmem is the data portion of a struct mem as returned by a previous
* call to mem_malloc()
*/
void
mem_free(void *rmem)
{
struct mem *mem;
LWIP_MEM_FREE_DECL_PROTECT();
if (rmem == NULL) {
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
return;
}
LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0);
LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
(u8_t *)rmem < (u8_t *)ram_end);
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
SYS_ARCH_DECL_PROTECT(lev);
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
/* protect mem stats from concurrent access */
SYS_ARCH_PROTECT(lev);
MEM_STATS_INC(illegal);
SYS_ARCH_UNPROTECT(lev);
return;
}
/* protect the heap from concurrent access */
LWIP_MEM_FREE_PROTECT();
/* Get the corresponding struct mem ... */
mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
/* ... which has to be in a used state ... */
LWIP_ASSERT("mem_free: mem->used", mem->used);
/* ... and is now unused. */
mem->used = 0;
if (mem < lfree) {
/* the newly freed struct is now the lowest */
lfree = mem;
}
MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
/* finally, see if prev or next are free also */
plug_holes(mem);
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 1;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_MEM_FREE_UNPROTECT();
}
/**
* Shrink memory returned by mem_malloc().
*
* @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
* @param newsize required size after shrinking (needs to be smaller than or
* equal to the previous size)
* @return for compatibility reasons: is always == rmem, at the moment
* or NULL if newsize is > old size, in which case rmem is NOT touched
* or freed!
*/
void *
mem_trim(void *rmem, mem_size_t newsize)
{
mem_size_t size;
mem_size_t ptr, ptr2;
struct mem *mem, *mem2;
/* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
LWIP_MEM_FREE_DECL_PROTECT();
/* Expand the size of the allocated memory region so that we can
adjust for alignment. */
newsize = LWIP_MEM_ALIGN_SIZE(newsize);
if(newsize < MIN_SIZE_ALIGNED) {
/* every data block must be at least MIN_SIZE_ALIGNED long */
newsize = MIN_SIZE_ALIGNED;
}
if (newsize > MEM_SIZE_ALIGNED) {
return NULL;
}
LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
(u8_t *)rmem < (u8_t *)ram_end);
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
SYS_ARCH_DECL_PROTECT(lev);
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
/* protect mem stats from concurrent access */
SYS_ARCH_PROTECT(lev);
MEM_STATS_INC(illegal);
SYS_ARCH_UNPROTECT(lev);
return rmem;
}
/* Get the corresponding struct mem ... */
mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
/* ... and its offset pointer */
ptr = (mem_size_t)((u8_t *)mem - ram);
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
if (newsize > size) {
/* not supported */
return NULL;
}
if (newsize == size) {
/* No change in size, simply return */
return rmem;
}
/* protect the heap from concurrent access */
LWIP_MEM_FREE_PROTECT();
mem2 = (struct mem *)(void *)&ram[mem->next];
if(mem2->used == 0) {
/* The next struct is unused, we can simply move it at little */
mem_size_t next;
/* remember the old next pointer */
next = mem2->next;
/* create new struct mem which is moved directly after the shrinked mem */
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
if (lfree == mem2) {
lfree = (struct mem *)(void *)&ram[ptr2];
}
mem2 = (struct mem *)(void *)&ram[ptr2];
mem2->used = 0;
/* restore the next pointer */
mem2->next = next;
/* link it back to mem */
mem2->prev = ptr;
/* link mem to it */
mem->next = ptr2;
/* last thing to restore linked list: as we have moved mem2,
* let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
* the end of the heap */
if (mem2->next != MEM_SIZE_ALIGNED) {
((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
}
MEM_STATS_DEC_USED(used, (size - newsize));
/* no need to plug holes, we've already done that */
} else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
/* Next struct is used but there's room for another struct mem with
* at least MIN_SIZE_ALIGNED of data.
* Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
* ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory */
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mem2 = (struct mem *)(void *)&ram[ptr2];
if (mem2 < lfree) {
lfree = mem2;
}
mem2->used = 0;
mem2->next = mem->next;
mem2->prev = ptr;
mem->next = ptr2;
if (mem2->next != MEM_SIZE_ALIGNED) {
((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
}
MEM_STATS_DEC_USED(used, (size - newsize));
/* the original mem->next is used, so no need to plug holes! */
}
/* else {
next struct mem is used but size between mem and mem2 is not big enough
to create another struct mem
-> don't do anyhting.
-> the remaining space stays unused since it is too small
} */
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 1;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_MEM_FREE_UNPROTECT();
return rmem;
}
/**
* Adam's mem_malloc() plus solution for bug #17922
* Allocate a block of memory with a minimum of 'size' bytes.
*
* @param size is the minimum size of the requested block in bytes.
* @return pointer to allocated memory or NULL if no free memory was found.
*
* Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
*/
void *
mem_malloc(mem_size_t size)
{
mem_size_t ptr, ptr2;
struct mem *mem, *mem2;
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
u8_t local_mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_MEM_ALLOC_DECL_PROTECT();
if (size == 0) {
return NULL;
}
/* Expand the size of the allocated memory region so that we can
adjust for alignment. */
size = LWIP_MEM_ALIGN_SIZE(size);
if(size < MIN_SIZE_ALIGNED) {
/* every data block must be at least MIN_SIZE_ALIGNED long */
size = MIN_SIZE_ALIGNED;
}
if (size > MEM_SIZE_ALIGNED) {
return NULL;
}
/* protect the heap from concurrent access */
sys_mutex_lock(&mem_mutex);
LWIP_MEM_ALLOC_PROTECT();
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
/* run as long as a mem_free disturbed mem_malloc or mem_trim */
do {
local_mem_free_count = 0;
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
/* Scan through the heap searching for a free block that is big enough,
* beginning with the lowest free block.
*/
for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size;
ptr = ((struct mem *)(void *)&ram[ptr])->next) {
mem = (struct mem *)(void *)&ram[ptr];
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 0;
LWIP_MEM_ALLOC_UNPROTECT();
/* allow mem_free or mem_trim to run */
LWIP_MEM_ALLOC_PROTECT();
if (mem_free_count != 0) {
/* If mem_free or mem_trim have run, we have to restart since they
could have altered our current struct mem. */
local_mem_free_count = 1;
break;
}
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
if ((!mem->used) &&
(mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
/* mem is not used and at least perfect fit is possible:
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
/* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
* -> split large block, create empty remainder,
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
* struct mem would fit in but no data between mem2 and mem2->next
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory
*/
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
/* create mem2 struct */
mem2 = (struct mem *)(void *)&ram[ptr2];
mem2->used = 0;
mem2->next = mem->next;
mem2->prev = ptr;
/* and insert it between mem and mem->next */
mem->next = ptr2;
mem->used = 1;
if (mem2->next != MEM_SIZE_ALIGNED) {
((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
}
MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
} else {
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
* take care of this).
* -> near fit or excact fit: do not split, no mem2 creation
* also can't move mem->next directly behind mem, since mem->next
* will always be used at this point!
*/
mem->used = 1;
MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram));
}
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_malloc_adjust_lfree:
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
if (mem == lfree) {
struct mem *cur = lfree;
/* Find next free block after mem and update lowest free pointer */
while (cur->used && cur != ram_end) {
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mem_free_count = 0;
LWIP_MEM_ALLOC_UNPROTECT();
/* prevent high interrupt latency... */
LWIP_MEM_ALLOC_PROTECT();
if (mem_free_count != 0) {
/* If mem_free or mem_trim have run, we have to restart since they
could have altered our current struct mem or lfree. */
goto mem_malloc_adjust_lfree;
}
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
cur = (struct mem *)(void *)&ram[cur->next];
}
lfree = cur;
LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
}
LWIP_MEM_ALLOC_UNPROTECT();
sys_mutex_unlock(&mem_mutex);
LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
(mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
LWIP_ASSERT("mem_malloc: sanity check alignment",
(((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
return (u8_t *)mem + SIZEOF_STRUCT_MEM;
}
}
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
/* if we got interrupted by a mem_free, try again */
} while(local_mem_free_count != 0);
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
MEM_STATS_INC(err);
LWIP_MEM_ALLOC_UNPROTECT();
sys_mutex_unlock(&mem_mutex);
return NULL;
}
#endif /* MEM_USE_POOLS */
/**
* Contiguously allocates enough space for count objects that are size bytes
* of memory each and returns a pointer to the allocated memory.
*
* The allocated memory is filled with bytes of value zero.
*
* @param count number of objects to allocate
* @param size size of the objects to allocate
* @return pointer to allocated memory / NULL pointer if there is an error
*/
void *mem_calloc(mem_size_t count, mem_size_t size)
{
void *p;
/* allocate 'count' objects of size 'size' */
p = mem_malloc(count * size);
if (p) {
/* zero the memory */
memset(p, 0, count * size);
}
return p;
}
#endif /* !MEM_LIBC_MALLOC */