lib_mem.c
106 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
/*
*********************************************************************************************************
* uC/LIB
* CUSTOM LIBRARY MODULES
*
* (c) Copyright 2004-2012; Micrium, Inc.; Weston, FL
*
* All rights reserved. Protected by international copyright laws.
*
* uC/LIB is provided in source form to registered licensees ONLY. It is
* illegal to distribute this source code to any third party unless you receive
* written permission by an authorized Micrium representative. Knowledge of
* the source code may NOT be used to develop a similar product.
*
* Please help us continue to provide the Embedded community with the finest
* software available. Your honesty is greatly appreciated.
*
* You can contact us at www.micrium.com.
*********************************************************************************************************
*/
/*
*********************************************************************************************************
*
* STANDARD MEMORY OPERATIONS
*
* Filename : lib_mem.c
* Version : V1.37.01
* Programmer(s) : ITJ
* FGK
* JFD
* FBJ
*********************************************************************************************************
* Note(s) : (1) NO compiler-supplied standard library functions are used in library or product software.
*
* (a) ALL standard library functions are implemented in the custom library modules :
*
* (1) \<Custom Library Directory>\lib_*.*
*
* (2) \<Custom Library Directory>\Ports\<cpu>\<compiler>\lib*_a.*
*
* where
* <Custom Library Directory> directory path for custom library software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (b) Product-specific library functions are implemented in individual products.
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* INCLUDE FILES
*********************************************************************************************************
*/
#define MICRIUM_SOURCE
#define LIB_MEM_MODULE
#include <lib_mem.h>
/*$PAGE*/
/*
*********************************************************************************************************
* LOCAL DEFINES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* LOCAL CONSTANTS
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* LOCAL DATA TYPES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* LOCAL TABLES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* LOCAL GLOBAL VARIABLES
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
MEM_POOL *Mem_PoolTbl; /* Mem pool/seg tbl. */
MEM_POOL Mem_PoolHeap; /* Mem heap pool/seg. */
#ifndef LIB_MEM_CFG_HEAP_BASE_ADDR
CPU_INT08U Mem_Heap[LIB_MEM_CFG_HEAP_SIZE]; /* Mem heap. */
#endif
#endif
/*
*********************************************************************************************************
* LOCAL FUNCTION PROTOTYPES
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED) /* -------------- MEM POOL FNCTS -------------- */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
static CPU_BOOLEAN Mem_PoolBlkIsValidAddr(MEM_POOL *pmem_pool,
void *pmem_blk);
#endif
static CPU_SIZE_T Mem_SegCalcTotSize (void *pmem_addr,
MEM_POOL_BLK_QTY blk_nbr,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align);
static void *Mem_SegAlloc (MEM_POOL *pmem_pool,
CPU_SIZE_T size,
CPU_SIZE_T align);
#endif
/*
*********************************************************************************************************
* LOCAL CONFIGURATION ERRORS
*********************************************************************************************************
*/
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_Init()
*
* Description : (1) Initialize Memory Management Module :
*
* (a) Initialize heap memory pool
* (b) Initialize memory pool table
*
*
* Argument(s) : none.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (2) Mem_Init() MUST be called ... :
*
* (a) ONLY ONCE from a product's application; ...
* (b) BEFORE product's application calls any memory library module function(s)
*********************************************************************************************************
*/
void Mem_Init (void)
{
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
MEM_POOL *pmem_pool;
/* --------- INIT MEM HEAP SEG / POOL --------- */
pmem_pool = (MEM_POOL *)&Mem_PoolHeap;
pmem_pool->Type = (LIB_MEM_TYPE) LIB_MEM_TYPE_HEAP;
pmem_pool->SegHeadPtr = (MEM_POOL *)&Mem_PoolHeap; /* Heap seg head = heap seg. */
pmem_pool->SegPrevPtr = (MEM_POOL *) 0;
pmem_pool->SegNextPtr = (MEM_POOL *) 0;
pmem_pool->PoolPrevPtr = (MEM_POOL *) 0;
pmem_pool->PoolNextPtr = (MEM_POOL *) 0;
pmem_pool->PoolAddrStart = (void *) 0;
pmem_pool->PoolAddrEnd = (void *) 0;
pmem_pool->PoolPtrs = (void **) 0;
pmem_pool->BlkSize = (CPU_SIZE_T ) 0u;
pmem_pool->BlkNbr = (CPU_SIZE_T ) 0u;
pmem_pool->BlkIx = (MEM_POOL_IX ) 0u;
#ifdef LIB_MEM_CFG_HEAP_BASE_ADDR
pmem_pool->SegAddr = (void *) LIB_MEM_CFG_HEAP_BASE_ADDR;
pmem_pool->SegAddrNextAvail = (void *) LIB_MEM_CFG_HEAP_BASE_ADDR;
#else
pmem_pool->SegAddr = (void *)&Mem_Heap[0];
pmem_pool->SegAddrNextAvail = (void *)&Mem_Heap[0];
#endif
pmem_pool->SegSizeTot = (CPU_SIZE_T ) LIB_MEM_CFG_HEAP_SIZE;
pmem_pool->SegSizeRem = (CPU_SIZE_T ) LIB_MEM_CFG_HEAP_SIZE;
/* ------------ INIT MEM POOL TBL ------------- */
Mem_PoolTbl = &Mem_PoolHeap;
#endif
}
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_Clr()
*
* Description : Clear data buffer (see Note #2).
*
* Argument(s) : pmem Pointer to memory buffer to clear.
*
* size Number of data buffer octets to clear (see Note #1).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Null clears allowed (i.e. zero-length clears).
*
* See also 'Mem_Set() Note #1'.
*
* (2) Clear data by setting each data octet to 0.
*********************************************************************************************************
*/
void Mem_Clr (void *pmem,
CPU_SIZE_T size)
{
Mem_Set(pmem,
0u, /* See Note #2. */
size);
}
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_Set()
*
* Description : Fill data buffer with specified data octet.
*
* Argument(s) : pmem Pointer to memory buffer to fill with specified data octet.
*
* data_val Data fill octet value.
*
* size Number of data buffer octets to fill (see Note #1).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Null sets allowed (i.e. zero-length sets).
*
* (2) For best CPU performance, optimized to fill data buffer using 'CPU_ALIGN'-sized data
* words.
*
* (a) Since many word-aligned processors REQUIRE that multi-octet words be accessed on
* word-aligned addresses, 'CPU_ALIGN'-sized words MUST be accessed on 'CPU_ALIGN'd
* addresses.
*
* (3) Modulo arithmetic is used to determine whether a memory buffer starts on a 'CPU_ALIGN'
* address boundary.
*
* Modulo arithmetic in ANSI-C REQUIREs operations performed on integer values. Thus
* address values MUST be cast to an appropriately-sized integer value PRIOR to any
* 'mem_align_mod' arithmetic operation.
*********************************************************************************************************
*/
void Mem_Set (void *pmem,
CPU_INT08U data_val,
CPU_SIZE_T size)
{
CPU_SIZE_T size_rem;
CPU_ALIGN data_align;
CPU_ALIGN *pmem_align;
CPU_INT08U *pmem_08;
CPU_DATA mem_align_mod;
CPU_DATA i;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size < 1) { /* See Note #1. */
return;
}
if (pmem == (void *)0) {
return;
}
#endif
data_align = 0u;
for (i = 0u; i < sizeof(CPU_ALIGN); i++) { /* Fill each data_align octet with data val. */
data_align <<= DEF_OCTET_NBR_BITS;
data_align |= (CPU_ALIGN)data_val;
}
size_rem = size;
mem_align_mod = (CPU_INT08U)((CPU_ADDR)pmem % sizeof(CPU_ALIGN)); /* See Note #3. */
pmem_08 = (CPU_INT08U *)pmem;
if (mem_align_mod != 0u) { /* If leading octets avail, ... */
i = mem_align_mod;
while ((size_rem > 0) && /* ... start mem buf fill with leading octets ... */
(i < sizeof(CPU_ALIGN ))) { /* ... until next CPU_ALIGN word boundary. */
*pmem_08++ = data_val;
size_rem -= sizeof(CPU_INT08U);
i++;
}
}
pmem_align = (CPU_ALIGN *)pmem_08; /* See Note #2a. */
while (size_rem >= sizeof(CPU_ALIGN)) { /* While mem buf aligned on CPU_ALIGN word boundaries, */
*pmem_align++ = data_align; /* ... fill mem buf with CPU_ALIGN-sized data. */
size_rem -= sizeof(CPU_ALIGN);
}
pmem_08 = (CPU_INT08U *)pmem_align;
while (size_rem > 0) { /* Finish mem buf fill with trailing octets. */
*pmem_08++ = data_val;
size_rem -= sizeof(CPU_INT08U);
}
}
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_Copy()
*
* Description : Copy data octets from one memory buffer to another memory buffer.
*
* Argument(s) : pdest Pointer to destination memory buffer.
*
* psrc Pointer to source memory buffer.
*
* size Number of octets to copy (see Note #1).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Null copies allowed (i.e. zero-length copies).
*
* (2) Memory buffers NOT checked for overlapping.
*
* (a) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that "if
* copying takes place between objects that overlap, the behavior is undefined".
*
* (b) However, data octets from a source memory buffer at a higher address value SHOULD
* successfully copy to a destination memory buffer at a lower address value even
* if any octets of the memory buffers overlap as long as no individual, atomic CPU
* word copy overlaps.
*
* Since Mem_Copy() performs the data octet copy via 'CPU_ALIGN'-sized words &/or
* octets; & since 'CPU_ALIGN'-sized words MUST be accessed on word-aligned addresses
* (see Note #3b), neither 'CPU_ALIGN'-sized words nor octets at unique addresses can
* ever overlap.
*
* Therefore, Mem_Copy() SHOULD be able to successfully copy overlapping memory
* buffers as long as the source memory buffer is at a higher address value than the
* destination memory buffer.
*
* (3) For best CPU performance, optimized to copy data buffer using 'CPU_ALIGN'-sized data
* words.
*
* (a) Since many word-aligned processors REQUIRE that multi-octet words be accessed on
* word-aligned addresses, 'CPU_ALIGN'-sized words MUST be accessed on 'CPU_ALIGN'd
* addresses.
*
* (4) Modulo arithmetic is used to determine whether a memory buffer starts on a 'CPU_ALIGN'
* address boundary.
*
* Modulo arithmetic in ANSI-C REQUIREs operations performed on integer values. Thus
* address values MUST be cast to an appropriately-sized integer value PRIOR to any
* 'mem_align_mod' arithmetic operation.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_ENABLED)
void Mem_Copy ( void *pdest,
const void *psrc,
CPU_SIZE_T size)
{
CPU_SIZE_T size_rem;
CPU_SIZE_T mem_gap_octets;
CPU_ALIGN *pmem_align_dest;
const CPU_ALIGN *pmem_align_src;
CPU_INT08U *pmem_08_dest;
const CPU_INT08U *pmem_08_src;
CPU_DATA i;
CPU_DATA mem_align_mod_dest;
CPU_DATA mem_align_mod_src;
CPU_BOOLEAN mem_aligned;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size < 1) { /* See Note #1. */
return;
}
if (pdest == (void *)0) {
return;
}
if (psrc == (void *)0) {
return;
}
#endif
size_rem = size;
pmem_08_dest = ( CPU_INT08U *)pdest;
pmem_08_src = (const CPU_INT08U *)psrc;
mem_gap_octets = pmem_08_src - pmem_08_dest;
if (mem_gap_octets >= sizeof(CPU_ALIGN)) { /* Avoid bufs overlap. */
/* See Note #4. */
mem_align_mod_dest = (CPU_INT08U)((CPU_ADDR)pmem_08_dest % sizeof(CPU_ALIGN));
mem_align_mod_src = (CPU_INT08U)((CPU_ADDR)pmem_08_src % sizeof(CPU_ALIGN));
mem_aligned = (mem_align_mod_dest == mem_align_mod_src) ? DEF_YES : DEF_NO;
if (mem_aligned == DEF_YES) { /* If mem bufs' alignment offset equal, ... */
/* ... optimize copy for mem buf alignment. */
if (mem_align_mod_dest != 0u) { /* If leading octets avail, ... */
i = mem_align_mod_dest;
while ((size_rem > 0) && /* ... start mem buf copy with leading octets ... */
(i < sizeof(CPU_ALIGN ))) { /* ... until next CPU_ALIGN word boundary. */
*pmem_08_dest++ = *pmem_08_src++;
size_rem -= sizeof(CPU_INT08U);
i++;
}
}
pmem_align_dest = ( CPU_ALIGN *)pmem_08_dest; /* See Note #3a. */
pmem_align_src = (const CPU_ALIGN *)pmem_08_src;
while (size_rem >= sizeof(CPU_ALIGN)) { /* While mem bufs aligned on CPU_ALIGN word boundaries, */
*pmem_align_dest++ = *pmem_align_src++; /* ... copy psrc to pdest with CPU_ALIGN-sized words. */
size_rem -= sizeof(CPU_ALIGN);
}
pmem_08_dest = ( CPU_INT08U *)pmem_align_dest;
pmem_08_src = (const CPU_INT08U *)pmem_align_src;
}
}
while (size_rem > 0) { /* For unaligned mem bufs or trailing octets, ... */
*pmem_08_dest++ = *pmem_08_src++; /* ... copy psrc to pdest by octets. */
size_rem -= sizeof(CPU_INT08U);
}
}
#endif
/*
*********************************************************************************************************
* Mem_Move()
*
* Description : Move data octets from one memory buffer to another memory buffer, or within the same
* memory buffer. Overlapping is correctly handled for all move operations.
*
* Argument(s) : pdest Pointer to destination memory buffer.
*
* psrc Pointer to source memory buffer.
*
* size Number of octets to move (see Note #1).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Null move operations allowed (i.e. zero-length).
*
* (2) Memory buffers checked for overlapping.
*
* (3) For best CPU performance, optimized to copy data buffer using 'CPU_ALIGN'-sized data
* words.
*
* (a) Since many word-aligned processors REQUIRE that multi-octet words be accessed on
* word-aligned addresses, 'CPU_ALIGN'-sized words MUST be accessed on 'CPU_ALIGN'd
* addresses.
*
* (4) Modulo arithmetic is used to determine whether a memory buffer starts on a 'CPU_ALIGN'
* address boundary.
*
* Modulo arithmetic in ANSI-C REQUIREs operations performed on integer values. Thus
* address values MUST be cast to an appropriately-sized integer value PRIOR to any
* 'mem_align_mod' arithmetic operation.
*********************************************************************************************************
*/
/*$PAGE*/
void Mem_Move ( void *pdest,
const void *psrc,
CPU_SIZE_T size)
{
CPU_SIZE_T size_rem;
CPU_SIZE_T mem_gap_octets;
CPU_ALIGN *pmem_align_dest;
const CPU_ALIGN *pmem_align_src;
CPU_INT08U *pmem_08_dest;
const CPU_INT08U *pmem_08_src;
CPU_INT08S i;
CPU_DATA mem_align_mod_dest;
CPU_DATA mem_align_mod_src;
CPU_BOOLEAN mem_aligned;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size < 1) {
return;
}
if (pdest == (void *)0) {
return;
}
if (psrc == (void *)0) {
return;
}
#endif
pmem_08_src = (const CPU_INT08U *)psrc;
pmem_08_dest = ( CPU_INT08U *)pdest;
if (pmem_08_src > pmem_08_dest) {
Mem_Copy(pdest, psrc, size);
return;
}
size_rem = size;
pmem_08_dest = ( CPU_INT08U *)pdest + size - 1;
pmem_08_src = (const CPU_INT08U *)psrc + size - 1;
mem_gap_octets = pmem_08_dest - pmem_08_src;
if (mem_gap_octets >= sizeof(CPU_ALIGN)) { /* Avoid bufs overlap. */
/* See Note #4. */
mem_align_mod_dest = (CPU_INT08U)((CPU_ADDR)pmem_08_dest % sizeof(CPU_ALIGN));
mem_align_mod_src = (CPU_INT08U)((CPU_ADDR)pmem_08_src % sizeof(CPU_ALIGN));
mem_aligned = (mem_align_mod_dest == mem_align_mod_src) ? DEF_YES : DEF_NO;
if (mem_aligned == DEF_YES) { /* If mem bufs' alignment offset equal, ... */
/* ... optimize copy for mem buf alignment. */
if (mem_align_mod_dest != (sizeof(CPU_ALIGN) - 1)) {/* If leading octets avail, ... */
i = mem_align_mod_dest;
while ((size_rem > 0) && /* ... start mem buf copy with leading octets ... */
(i >= 0)) { /* ... until next CPU_ALIGN word boundary. */
*pmem_08_dest-- = *pmem_08_src--;
size_rem -= sizeof(CPU_INT08U);
i--;
}
}
/* See Note #3a. */
pmem_align_dest = ( CPU_ALIGN *)((CPU_INT08U *)pmem_08_dest - sizeof(CPU_ALIGN) + 1);
pmem_align_src = (const CPU_ALIGN *)((CPU_INT08U *)pmem_08_src - sizeof(CPU_ALIGN) + 1);
while (size_rem >= sizeof(CPU_ALIGN)) { /* While mem bufs aligned on CPU_ALIGN word boundaries, */
*pmem_align_dest-- = *pmem_align_src--; /* ... copy psrc to pdest with CPU_ALIGN-sized words. */
size_rem -= sizeof(CPU_ALIGN);
}
pmem_08_dest = ( CPU_INT08U *)pmem_align_dest + sizeof(CPU_ALIGN) - 1;
pmem_08_src = (const CPU_INT08U *)pmem_align_src + sizeof(CPU_ALIGN) - 1;
}
}
while (size_rem > 0) { /* For unaligned mem bufs or trailing octets, ... */
*pmem_08_dest-- = *pmem_08_src--; /* ... copy psrc to pdest by octets. */
size_rem -= sizeof(CPU_INT08U);
}
}
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_Cmp()
*
* Description : Verify that ALL data octets in two memory buffers are identical in sequence.
*
* Argument(s) : p1_mem Pointer to first memory buffer.
*
* p2_mem Pointer to second memory buffer.
*
* size Number of data buffer octets to compare (see Note #1).
*
* Return(s) : DEF_YES, if 'size' number of data octets are identical in both memory buffers.
*
* DEF_NO, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : (1) Null compares allowed (i.e. zero-length compares); 'DEF_YES' returned to indicate
* identical null compare.
*
* (2) Many memory buffer comparisons vary ONLY in the least significant octets -- e.g.
* network address buffers. Consequently, memory buffer comparison is more efficient
* if the comparison starts from the end of the memory buffers which will abort sooner
* on dissimilar memory buffers that vary only in the least significant octets.
*
* (3) For best CPU performance, optimized to compare data buffers using 'CPU_ALIGN'-sized
* data words.
*
* (a) Since many word-aligned processors REQUIRE that multi-octet words be accessed on
* word-aligned addresses, 'CPU_ALIGN'-sized words MUST be accessed on 'CPU_ALIGN'd
* addresses.
*
* (4) Modulo arithmetic is used to determine whether a memory buffer starts on a 'CPU_ALIGN'
* address boundary.
*
* Modulo arithmetic in ANSI-C REQUIREs operations performed on integer values. Thus
* address values MUST be cast to an appropriately-sized integer value PRIOR to any
* 'mem_align_mod' arithmetic operation.
*********************************************************************************************************
*/
/*$PAGE*/
CPU_BOOLEAN Mem_Cmp (const void *p1_mem,
const void *p2_mem,
CPU_SIZE_T size)
{
CPU_SIZE_T size_rem;
CPU_ALIGN *p1_mem_align;
CPU_ALIGN *p2_mem_align;
const CPU_INT08U *p1_mem_08;
const CPU_INT08U *p2_mem_08;
CPU_DATA i;
CPU_DATA mem_align_mod_1;
CPU_DATA mem_align_mod_2;
CPU_BOOLEAN mem_aligned;
CPU_BOOLEAN mem_cmp;
if (size < 1) { /* See Note #1. */
return (DEF_YES);
}
if (p1_mem == (void *)0) {
return (DEF_NO);
}
if (p2_mem == (void *)0) {
return (DEF_NO);
}
mem_cmp = DEF_YES; /* Assume mem bufs are identical until cmp fails. */
size_rem = size;
/* Start @ end of mem bufs (see Note #2). */
p1_mem_08 = (const CPU_INT08U *)p1_mem + size;
p2_mem_08 = (const CPU_INT08U *)p2_mem + size;
/* See Note #4. */
mem_align_mod_1 = (CPU_INT08U)((CPU_ADDR)p1_mem_08 % sizeof(CPU_ALIGN));
mem_align_mod_2 = (CPU_INT08U)((CPU_ADDR)p2_mem_08 % sizeof(CPU_ALIGN));
mem_aligned = (mem_align_mod_1 == mem_align_mod_2) ? DEF_YES : DEF_NO;
if (mem_aligned == DEF_YES) { /* If mem bufs' alignment offset equal, ... */
/* ... optimize cmp for mem buf alignment. */
if (mem_align_mod_1 != 0u) { /* If trailing octets avail, ... */
i = mem_align_mod_1;
while ((mem_cmp == DEF_YES) && /* ... cmp mem bufs while identical & ... */
(size_rem > 0) && /* ... start mem buf cmp with trailing octets ... */
(i > 0)) { /* ... until next CPU_ALIGN word boundary. */
p1_mem_08--;
p2_mem_08--;
if (*p1_mem_08 != *p2_mem_08) { /* If ANY data octet(s) NOT identical, cmp fails. */
mem_cmp = DEF_NO;
}
size_rem -= sizeof(CPU_INT08U);
i--;
}
}
if (mem_cmp == DEF_YES) { /* If cmp still identical, cmp aligned mem bufs. */
p1_mem_align = (CPU_ALIGN *)p1_mem_08; /* See Note #3a. */
p2_mem_align = (CPU_ALIGN *)p2_mem_08;
while ((mem_cmp == DEF_YES) && /* Cmp mem bufs while identical & ... */
(size_rem >= sizeof(CPU_ALIGN))) { /* ... mem bufs aligned on CPU_ALIGN word boundaries. */
p1_mem_align--;
p2_mem_align--;
if (*p1_mem_align != *p2_mem_align) { /* If ANY data octet(s) NOT identical, cmp fails. */
mem_cmp = DEF_NO;
}
size_rem -= sizeof(CPU_ALIGN);
}
p1_mem_08 = (CPU_INT08U *)p1_mem_align;
p2_mem_08 = (CPU_INT08U *)p2_mem_align;
}
}
while ((mem_cmp == DEF_YES) && /* Cmp mem bufs while identical ... */
(size_rem > 0)) { /* ... for unaligned mem bufs or trailing octets. */
p1_mem_08--;
p2_mem_08--;
if (*p1_mem_08 != *p2_mem_08) { /* If ANY data octet(s) NOT identical, cmp fails. */
mem_cmp = DEF_NO;
}
size_rem -= sizeof(CPU_INT08U);
}
return (mem_cmp);
}
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_HeapAlloc()
*
* Description : Allocate a memory block from the heap memory pool.
*
* Argument(s) : size Size of memory block to allocate (in octets).
*
* align Alignment of memory block to specific word boundary (in octets).
*
* poctets_reqd Optional pointer to a variable to ... :
*
* (a) Return the number of octets required to successfully
* allocate the memory block, if any error(s);
* (b) Return 0, otherwise.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory block successfully returned.
* LIB_MEM_ERR_INVALID_MEM_SIZE Invalid memory size.
* LIB_MEM_ERR_INVALID_MEM_ALIGN Invalid memory alignment.
* LIB_MEM_ERR_HEAP_EMPTY Heap segment empty; NOT enough available
* memory from heap.
* LIB_MEM_ERR_HEAP_OVF Requested memory overflows heap memory.
*
* Return(s) : Pointer to memory block, if NO error(s).
*
* Pointer to NULL, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : (1) Pointers to variables that return values MUST be initialized PRIOR to all other
* validation or function handling in case of any error(s).
*
* (2) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
void *Mem_HeapAlloc (CPU_SIZE_T size,
CPU_SIZE_T align,
CPU_SIZE_T *poctets_reqd,
LIB_ERR *perr)
{
MEM_POOL *pmem_pool_heap;
void *pmem_addr;
void *pmem_blk;
CPU_SIZE_T octets_reqd_unused;
CPU_SIZE_T size_rem;
CPU_SIZE_T size_req;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------- VALIDATE RTN ERR PTR ------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION((void *)0);
}
#endif
/* ------------ VALIDATE RTN OCTETS PTR ----------- */
if (poctets_reqd == (CPU_SIZE_T *) 0) { /* If NOT avail, ... */
poctets_reqd = (CPU_SIZE_T *)&octets_reqd_unused; /* ... re-cfg NULL rtn ptr to unused local var. */
(void)&octets_reqd_unused; /* Prevent possible 'variable unused' warning. */
}
*poctets_reqd = 0u; /* Init octets req'd for err (see Note #1). */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------ VALIDATE HEAP MEM ALLOC ----------- */
if (size < 1) {
*perr = LIB_MEM_ERR_INVALID_MEM_SIZE;
return ((void *)0);
}
if (align < 1) {
*perr = LIB_MEM_ERR_INVALID_MEM_ALIGN;
return ((void *)0);
}
#endif
/* -------------- ALLOC HEAP MEM BLK -------------- */
pmem_pool_heap = &Mem_PoolHeap;
CPU_CRITICAL_ENTER();
pmem_addr = pmem_pool_heap->SegAddrNextAvail;
size_rem = pmem_pool_heap->SegSizeRem;
size_req = Mem_SegCalcTotSize(pmem_addr,
1u, /* Calc alloc for single mem blk from heap. */
size,
align);
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size_req < 1) { /* If req'd size ovf, ... */
CPU_CRITICAL_EXIT();
*poctets_reqd = size; /* ... rtn add'l heap size needed. */
*perr = LIB_MEM_ERR_HEAP_OVF;
return ((void *)0);
}
#endif
if (size_req > size_rem) { /* If req'd size > rem heap size, ... */
CPU_CRITICAL_EXIT();
*poctets_reqd = size_req - size_rem; /* ... rtn add'l heap size needed. */
*perr = LIB_MEM_ERR_HEAP_EMPTY;
return ((void *)0);
}
pmem_blk = Mem_SegAlloc(pmem_pool_heap, size, align);
if (pmem_blk == (void *)0) { /* If mem blk NOT avail from heap, ... */
CPU_CRITICAL_EXIT();
*poctets_reqd = size_req; /* ... rtn add'l heap size needed. */
*perr = LIB_MEM_ERR_HEAP_EMPTY;
return ((void *)0);
}
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
return (pmem_blk);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_HeapGetSizeRem()
*
* Description : Get remaining heap memory size available to allocate.
*
* Argument(s) : align Desired word boundary alignment (in octets) to return remaining memory size from.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* ---- RETURNED BY Mem_PoolGetSizeRem() : ----
* LIB_MEM_ERR_NONE Heap memory pool remaining size successfully
* returned.
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
* LIB_MEM_ERR_INVALID_MEM_ALIGN Invalid memory alignment.
*
* Return(s) : Remaining heap memory size (in octets), if NO error(s).
*
* 0, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : none.
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
CPU_SIZE_T Mem_HeapGetSizeRem (CPU_SIZE_T align,
LIB_ERR *perr)
{
CPU_SIZE_T size_rem;
size_rem = Mem_SegGetSizeRem(&Mem_PoolHeap, align, perr);
return (size_rem);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_SegGetSizeRem()
*
* Description : Get memory pool's remaining segment size available to allocate.
*
* Argument(s) : pmem_pool Pointer to a memory pool structure.
*
* align Desired word boundary alignment (in octets) to return remaining memory size from.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory segment remaining size successfully
* returned.
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
* LIB_MEM_ERR_INVALID_MEM_ALIGN Invalid memory alignment.
*
* Return(s) : Remaining memory segment size (in octets) [see Note #1], if NO error(s).
*
* 0, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : (1) Remaining size of memory segment returned from either :
*
* (a) Segment's configured dedicated memory, if any
* (b) Heap memory pool, otherwise
*
* (2) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
CPU_SIZE_T Mem_SegGetSizeRem (MEM_POOL *pmem_pool,
CPU_SIZE_T align,
LIB_ERR *perr)
{
MEM_POOL *pmem_seg;
MEM_POOL *pmem_seg_size;
CPU_SIZE_T size_rem;
CPU_SIZE_T size_rem_mod;
CPU_SIZE_T seg_addr_mod;
CPU_ADDR seg_addr;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
/* --------------- VALIDATE RTN ERR PTR --------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION(0u);
}
/* ---------------- VALIDATE MEM ALIGN ---------------- */
if (align < 1) {
*perr = LIB_MEM_ERR_INVALID_MEM_ALIGN;
return (0u);
}
if (align > DEF_ALIGN_MAX_NBR_OCTETS) {
*perr = LIB_MEM_ERR_INVALID_MEM_ALIGN;
return (0u);
}
/* ---------------- VALIDATE MEM POOL ----------------- */
if (pmem_pool == (MEM_POOL *)0) { /* Validate mem ptr. */
*perr = LIB_MEM_ERR_NULL_PTR;
return (0u);
}
#endif
CPU_CRITICAL_ENTER();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
switch (pmem_pool->Type) { /* Validate mem pool type. */
case LIB_MEM_TYPE_HEAP:
case LIB_MEM_TYPE_POOL:
break;
case LIB_MEM_TYPE_NONE:
default:
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return (0u); /* Prevent 'break NOT reachable' compiler warning. */
}
#endif
/* ------------- GET REM'ING MEM SEG SIZE ------------- */
pmem_seg = pmem_pool->SegHeadPtr; /* Get mem pool's head seg. */
pmem_seg_size = (pmem_seg->SegAddr != (void *)0)
? pmem_seg : &Mem_PoolHeap; /* See Note #1. */
size_rem = pmem_seg_size->SegSizeRem; /* Get mem seg's rem'ing mem size. */
seg_addr = (CPU_ADDR)pmem_seg_size->SegAddrNextAvail;
CPU_CRITICAL_EXIT();
if (align > 1) { /* If align > 1 octet, ... */
seg_addr_mod = seg_addr % align;
size_rem_mod = (seg_addr_mod > 0u) ? (align - seg_addr_mod) : 0u;
size_rem -= size_rem_mod; /* ... adj rem'ing size by offset to align'd seg addr. */
}
*perr = LIB_MEM_ERR_NONE;
return (size_rem);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolClr()
*
* Description : Clear a memory pool (see Note #1).
*
* Argument(s) : pmem_pool Pointer to a memory pool structure to clear (see Note #2).
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory pool successfully cleared.
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
*
* Return(s) : none.
*
* Caller(s) : Application,
* Mem_PoolCreate().
*
* Note(s) : (1) (a) Mem_PoolClr() ONLY clears a memory pool structure's variables & should ONLY be
* called to initialize a memory pool structure prior to calling Mem_PoolCreate().
*
* (b) Mem_PoolClr() does NOT deallocate memory from the memory pool or deallocate the
* memory pool itself & MUST NOT be called after calling Mem_PoolCreate() since
* this will likely corrupt the memory pool management.
*
* (2) Assumes 'pmem_pool' points to a valid memory pool (if non-NULL).
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
void Mem_PoolClr (MEM_POOL *pmem_pool,
LIB_ERR *perr)
{
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* -------------- VALIDATE RTN ERR PTR --------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION(;);
}
#endif
/* -------------- VALIDATE MEM POOL PTR --------------- */
if (pmem_pool == (MEM_POOL *)0) {
*perr = LIB_MEM_ERR_NULL_PTR;
return;
}
pmem_pool->Type = (LIB_MEM_TYPE)LIB_MEM_TYPE_NONE;
pmem_pool->SegHeadPtr = (MEM_POOL *)0;
pmem_pool->SegPrevPtr = (MEM_POOL *)0;
pmem_pool->SegNextPtr = (MEM_POOL *)0;
pmem_pool->PoolPrevPtr = (MEM_POOL *)0;
pmem_pool->PoolNextPtr = (MEM_POOL *)0;
pmem_pool->PoolAddrStart = (void *)0;
pmem_pool->PoolAddrEnd = (void *)0;
pmem_pool->PoolPtrs = (void **)0;
pmem_pool->PoolSize = (CPU_SIZE_T )0u;
pmem_pool->BlkAlign = (CPU_SIZE_T )0u;
pmem_pool->BlkSize = (CPU_SIZE_T )0u;
pmem_pool->BlkNbr = (CPU_SIZE_T )0u;
pmem_pool->BlkIx = (MEM_POOL_IX )0u;
pmem_pool->SegAddr = (void *)0;
pmem_pool->SegAddrNextAvail = (void *)0;
pmem_pool->SegSizeTot = (CPU_SIZE_T )0u;
pmem_pool->SegSizeRem = (CPU_SIZE_T )0u;
*perr = LIB_MEM_ERR_NONE;
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolCreate()
*
* Description : (1) Create a memory pool :
*
* (a) Create memory pool from heap or dedicated memory
* (b) Allocate memory pool memory blocks
* (c) Update memory pool table
* (d) Configure memory pool
*
*
* (2) Memory pools are indexed by the Memory Segments they use.
*
* (a) The memory pool table is composed by a two-dimensional list :
*
* (1) Memory segments manage the following memory segment/pool information :
*
* (A) Memory segment base address
* (B) Memory segment next available address
* (C) Memory segment total size
* (D) Memory segment remaining size
*
* (2) Memory pools share memory from memory segments but do NOT manage any memory
* segment information. To access the memory segment information, the head
* memory segment must be accessed via each memory pool's 'SegHeadPtr'.
*
* (b) In the diagram below, memory pools in vertical columns represent they share the same
* memory segment for the memory blocks they have. The heads of the memory pool are
* linked horizontally to form a memory pool table.
*
* (1) 'Mem_PoolTbl' points to the head of the Memory Pool table.
*
* (2) Memory Pools' 'SegPrevPtr' & 'SegNextPtr' doubly-link each memory segment to
* form the list of memory segments.
*
* (3) Memory Pools' 'PoolPrevPtr' & 'PoolNextPtr' doubly-link the memory pools of
* each memory segment.
*
* (c) New memory pools, which do not share a memory segment, are inserted in the Memory
* Segments Primary List. The point of insertion is such to keep ascended order by
* memory segment base address.
*
* (d) Memory pool pointers to memory blocks 'PoolPtrs' must be allocated for each created
* memory pool. These pointers are stored in the memory pool heap segment 'Mem_PoolHeap'.
*
* (1) A memory pool can also have its memory blocks allocated from the memory pool heap.
* 'pmem_base_addr' must be set to NULL & 'mem_size' must be set to (0) to create the
* memory pool.
*
*
* | |
* |<----------------------- Memory Segments ----------------------->|
* | (see Note #2a1) |
*
* Lowest Memory Segment Highest Memory Segment
* Base Address Base Address
* (see Note #2c) (see Note #2c)
*
* | SegNextPtr Heap Memory Pool |
* | (see Note #2b2) (see Note #2d) |
* | | |
* v | | v
* | v
* --- Head of Memory ------- ------- v ------- ------- -------
* ^ Pool Table --->| |------->| |------->| |------->| |------->| |
* | (see Note #2b1) | | | | | | | H | | |
* | | |<-------| |<-------| |<-------| E |<-------| |
* | | | | | ^ | | | A | | |
* | | | | | | | | | P | | |
* | | | | | | | | | | | |
* | ------- ------- | ------- ------- -------
* | | ^ | | ^
* | | | SegPrevPtr | |
* | v | (see Note #2b2) v |
* | ------- -------
* | | | |
* Memory Pools | | | |
* (see Note #2a2) | | | |
* | | | |
* | | | | |
* | ------- -------
* | | ^
* | PoolNextPtr ---> | | <--- PoolPrevPtr
* | (see Note #2b3) v | (see Note #2b3)
* | -------
* | | |
* | | |
* | | |
* | | |
* v | |
* --- -------
*
*$PAGE*
* Argument(s) : pmem_pool Pointer to a memory pool structure to create (see Note #3).
*
* pmem_base_addr Memory pool base address :
*
* (a) Null address Memory pool allocated from general-purpose heap.
* (b) Non-null address Memory pool allocated from dedicated memory
* specified by its base address.
*
* mem_size Size of memory pool segment (in octets).
*
* blk_nbr Number of memory pool blocks to create.
*
* blk_size Size of memory pool blocks to create (in octets).
*
* blk_align Alignment of memory pool blocks to specific word boundary (in octets).
*
* poctets_reqd Optional pointer to a variable to ... :
*
* (a) Return the number of octets required to successfully
* allocate the memory pool, if any error(s);
* (b) Return 0, otherwise.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory pool successfully created.
*
* LIB_MEM_ERR_HEAP_NOT_FOUND Heap segment NOT found.
* LIB_MEM_ERR_HEAP_EMPTY Heap segment empty; NOT enough available
* memory from heap.
* LIB_MEM_ERR_HEAP_OVF Requested memory overflows heap memory.
* LIB_MEM_ERR_SEG_EMPTY Memory segment empty; NOT enough available
* memory from segment for memory pools.
* LIB_MEM_ERR_SEG_OVF Requested memory overflows segment memory.
*
* LIB_MEM_ERR_INVALID_SEG_SIZE Invalid memory segment size.
* LIB_MEM_ERR_INVALID_SEG_OVERLAP Memory segment overlaps other memory
* segment(s) in memory pool table.
* LIB_MEM_ERR_INVALID_BLK_NBR Invalid memory pool number of blocks.
* LIB_MEM_ERR_INVALID_BLK_SIZE Invalid memory pool block size.
* LIB_MEM_ERR_INVALID_BLK_ALIGN Invalid memory pool block alignment.
*
* ------- RETURNED BY Mem_PoolClr() : -------
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (3) Assumes 'pmem_pool' points to a valid memory pool (if non-NULL).
*
* (4) Pointers to variables that return values MUST be initialized PRIOR to all other
* validation or function handling in case of any error(s).
*
* (5) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
void Mem_PoolCreate (MEM_POOL *pmem_pool,
void *pmem_base_addr,
CPU_SIZE_T mem_size,
MEM_POOL_BLK_QTY blk_nbr,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align,
CPU_SIZE_T *poctets_reqd,
LIB_ERR *perr)
{
MEM_POOL *pmem_pool_heap;
MEM_POOL *pmem_pool_next;
MEM_POOL *pmem_seg;
MEM_POOL *pmem_seg_prev;
MEM_POOL *pmem_seg_next;
void **ppool_ptr;
void *pmem_blk;
CPU_INT08U *pmem_addr_ptrs;
CPU_INT08U *pmem_addr_pool;
CPU_INT08U *pmem_base_addr_start;
CPU_INT08U *pmem_base_addr_end;
CPU_INT08U *pmem_seg_addr_start;
CPU_INT08U *pmem_seg_addr_end;
MEM_POOL_BLK_QTY blk_rem;
CPU_SIZE_T octets_reqd_unused;
CPU_SIZE_T size_tot;
CPU_SIZE_T size_tot_ptrs;
CPU_SIZE_T size_tot_pool;
CPU_SIZE_T size_rem;
CPU_SIZE_T size_pool_ptrs;
CPU_SIZE_T i;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------- VALIDATE RTN ERR PTR ------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION(;);
}
#endif
/* ------------ VALIDATE RTN OCTETS PTR ----------- */
if (poctets_reqd == (CPU_SIZE_T *) 0) { /* If NOT avail, ... */
poctets_reqd = (CPU_SIZE_T *)&octets_reqd_unused; /* ... re-cfg NULL rtn ptr to unused local var. */
(void)&octets_reqd_unused; /* Prevent possible 'variable unused' warning. */
}
*poctets_reqd = 0u; /* Init octets req'd for err (see Note #4). */
Mem_PoolClr(pmem_pool, perr); /* Init mem pool for err (see Note #4). */
if (*perr != LIB_MEM_ERR_NONE) {
return;
}
/* ----------- VALIDATE MEM POOL CREATE ----------- */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_base_addr != (void *)0) {
if (mem_size < 1) {
*perr = LIB_MEM_ERR_INVALID_SEG_SIZE;
return;
}
}
if (blk_nbr < 1) {
*perr = LIB_MEM_ERR_INVALID_BLK_NBR;
return;
}
if (blk_size < 1) {
*perr = LIB_MEM_ERR_INVALID_BLK_SIZE;
return;
}
if (blk_align < 1) {
*perr = LIB_MEM_ERR_INVALID_BLK_ALIGN;
return;
}
#endif
/* ------------ VALIDATE MEM POOL TBL ------------- */
if (Mem_PoolTbl == (MEM_POOL *)0) {
*perr = LIB_MEM_ERR_HEAP_NOT_FOUND;
return;
}
/*$PAGE*/
/* ---------------- CREATE MEM POOL --------------- */
pmem_pool_heap = (MEM_POOL *)&Mem_PoolHeap;
size_tot = (CPU_SIZE_T) 0u;
CPU_CRITICAL_ENTER();
if (pmem_base_addr == (void *)0) { /* If no base addr, cfg mem pool from heap. */
pmem_seg = pmem_pool_heap;
pmem_seg_prev = pmem_pool_heap;
pmem_seg_next = pmem_pool_heap;
/* --------------- VALIDATE MEM SEG --------------- */
/* Calc tot mem size for mem pool ptrs. */
pmem_addr_ptrs = (CPU_INT08U *)pmem_pool_heap->SegAddrNextAvail;
size_tot_ptrs = Mem_SegCalcTotSize((void *)pmem_addr_ptrs,
(CPU_SIZE_T)blk_nbr,
(CPU_SIZE_T)sizeof(void *),
(CPU_SIZE_T)sizeof(void *));
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size_tot_ptrs < 1) { /* If heap ovf, ... */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_HEAP_OVF; /* ... rtn err but add'l heap size NOT avail. */
return;
}
#endif
/* Calc tot mem size for mem blks. */
pmem_addr_pool = pmem_addr_ptrs + size_tot_ptrs; /* Adj next avail addr for mem pool blks. */
size_tot_pool = Mem_SegCalcTotSize((void *)pmem_addr_pool,
(CPU_SIZE_T)blk_nbr,
(CPU_SIZE_T)blk_size,
(CPU_SIZE_T)blk_align);
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size_tot_pool < 1) { /* If heap ovf, ... */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_HEAP_OVF; /* ... rtn err but add'l heap size NOT avail. */
return;
}
#endif
size_tot = size_tot_ptrs + size_tot_pool;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if ((size_tot < size_tot_ptrs) || /* If heap ovf, ... */
(size_tot < size_tot_pool)) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_HEAP_OVF; /* ... rtn err but add'l heap size NOT avail. */
return;
}
#endif
size_rem = pmem_pool_heap->SegSizeRem;
if (size_tot > size_rem) { /* If tot size > rem size, ... */
CPU_CRITICAL_EXIT();
*poctets_reqd = size_tot - size_rem; /* ... rtn add'l heap size needed. */
*perr = LIB_MEM_ERR_HEAP_EMPTY;
return;
}
/*$PAGE*/
} else { /* Else cfg mem pool from dedicated mem. */
/* -------- SRCH ALL MEM SEGS FOR MEM POOL -------- */
pmem_base_addr_start = (CPU_INT08U *)pmem_base_addr;
pmem_base_addr_end = (CPU_INT08U *)pmem_base_addr + mem_size - 1;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_base_addr_end < pmem_base_addr_start) { /* Chk ovf of end addr. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_ADDR;
return;
}
#endif
pmem_seg = (MEM_POOL *)0;
pmem_seg_prev = (MEM_POOL *)0;
pmem_seg_next = Mem_PoolTbl;
while (pmem_seg_next != (MEM_POOL *)0) { /* Srch tbl for mem seg with same base addr/size. */
if ((pmem_base_addr == pmem_seg_next->SegAddr) && /* If same base addr/size found, ... */
(mem_size == pmem_seg_next->SegSizeTot)) {
pmem_seg = pmem_seg_next; /* ... mem seg already avail in tbl. */
break;
} else {
pmem_seg_addr_start = (CPU_INT08U *)pmem_seg_next->SegAddr;
pmem_seg_addr_end = (CPU_INT08U *)pmem_seg_next->SegAddr + pmem_seg_next->SegSizeTot - 1;
if (pmem_base_addr_end < pmem_seg_addr_start) { /* If mem seg addr/size prior to next mem seg, ... */
break; /* ... new mem seg NOT avail in tbl. */
/* If mem seg overlaps prev mem seg(s) in tbl, ... */
} else if (((pmem_base_addr_start <= pmem_seg_addr_start) &&
(pmem_base_addr_end >= pmem_seg_addr_start)) ||
((pmem_base_addr_start >= pmem_seg_addr_start) &&
(pmem_base_addr_end <= pmem_seg_addr_end )) ||
((pmem_base_addr_start <= pmem_seg_addr_end ) &&
(pmem_base_addr_end >= pmem_seg_addr_end ))) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_SEG_OVERLAP; /* ... rtn err. */
return;
}
}
/* If mem seg NOT found, adv to next mem seg. */
pmem_seg_prev = pmem_seg_next;
pmem_seg_next = pmem_seg_next->SegNextPtr;
}
if (pmem_seg == (MEM_POOL *)0) { /* If mem seg NOT found, add new mem seg. */
pmem_seg = pmem_pool;
pmem_pool->SegAddr = pmem_base_addr;
pmem_pool->SegAddrNextAvail = pmem_base_addr;
pmem_pool->SegSizeTot = mem_size;
pmem_pool->SegSizeRem = mem_size;
}
/*$PAGE*/
/* --------------- VALIDATE MEM SEG --------------- */
/* Calc tot mem size for mem pool ptrs. */
pmem_addr_ptrs = (CPU_INT08U *)pmem_pool_heap->SegAddrNextAvail;
size_tot_ptrs = Mem_SegCalcTotSize((void *)pmem_addr_ptrs,
(CPU_SIZE_T)blk_nbr,
(CPU_SIZE_T)sizeof(void *),
(CPU_SIZE_T)sizeof(void *));
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size_tot_ptrs < 1) { /* If heap ovf, ... */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_HEAP_OVF; /* ... rtn err but add'l heap size NOT avail. */
return;
}
#endif
size_rem = pmem_pool_heap->SegSizeRem;
if (size_tot_ptrs > size_rem) { /* If ptr size > rem size, ... */
CPU_CRITICAL_EXIT();
*poctets_reqd = size_tot_ptrs - size_rem; /* ... rtn add'l heap size needed. */
*perr = LIB_MEM_ERR_HEAP_EMPTY;
return;
}
/* Calc tot mem size for mem blks. */
pmem_addr_pool = (CPU_INT08U *)pmem_seg->SegAddrNextAvail;
size_tot_pool = Mem_SegCalcTotSize((void *)pmem_addr_pool,
(CPU_SIZE_T)blk_nbr,
(CPU_SIZE_T)blk_size,
(CPU_SIZE_T)blk_align);
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (size_tot_pool < 1) { /* If seg ovf, ... */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_SEG_OVF; /* ... rtn err but add'l seg size NOT avail. */
return;
}
#endif
size_rem = pmem_seg->SegSizeRem;
if (size_tot_pool > size_rem) { /* If tot size > rem size, ... */
CPU_CRITICAL_EXIT();
*poctets_reqd = size_tot_pool - size_rem; /* ... rtn add'l seg size needed. */
*perr = LIB_MEM_ERR_SEG_EMPTY;
return;
}
}
/*$PAGE*/
/* ---------------- ALLOC MEM BLKs ---------------- */
size_pool_ptrs = (CPU_SIZE_T)(blk_nbr * sizeof(void *));
/* Alloc stk of ptrs for mem blks from heap. */
ppool_ptr = (void **)Mem_SegAlloc((MEM_POOL *)pmem_pool_heap,
(CPU_SIZE_T)size_pool_ptrs,
(CPU_SIZE_T)sizeof(void *));
if (ppool_ptr == (void **)0) { /* If mem pool ptrs alloc failed, ... */
size_rem = pmem_pool_heap->SegSizeRem;
CPU_CRITICAL_EXIT();
/* ... rtn add'l heap size needed. */
if (pmem_base_addr == (void *)0) {
if (size_tot > size_rem) {
*poctets_reqd = size_tot - size_rem;
} else {
*poctets_reqd = size_tot;
}
} else {
if (size_pool_ptrs > size_rem) {
*poctets_reqd = size_pool_ptrs - size_rem;
} else {
*poctets_reqd = size_pool_ptrs;
}
}
*perr = LIB_MEM_ERR_HEAP_EMPTY;
return;
}
for (i = 0u; i < (CPU_SIZE_T)blk_nbr; i++) { /* Alloc mem blks from mem seg. */
pmem_blk = (void *)Mem_SegAlloc(pmem_seg, blk_size, blk_align);
if (pmem_blk == (void *)0) { /* If mem blks alloc failed, ... */
pmem_addr_pool = (CPU_INT08U *)pmem_seg->SegAddrNextAvail;
size_rem = (CPU_SIZE_T )pmem_seg->SegSizeRem;
CPU_CRITICAL_EXIT();
blk_rem = blk_nbr - (MEM_POOL_BLK_QTY)i;
size_tot = Mem_SegCalcTotSize((void *)pmem_addr_pool,
(MEM_POOL_BLK_QTY)blk_rem,
(CPU_SIZE_T )blk_size,
(CPU_SIZE_T )blk_align);
/* ... rtn add'l seg size needed. */
if (size_tot > size_rem) {
*poctets_reqd = size_tot - size_rem;
} else {
*poctets_reqd = size_tot;
}
*perr = LIB_MEM_ERR_SEG_EMPTY;
return;
}
ppool_ptr[i] = pmem_blk;
}
/*$PAGE*/
/* ------------- UPDATE MEM POOL TBL -------------- */
if (pmem_seg == pmem_pool) { /* Add mem pool as new mem pool tbl seg. */
/* Update cur mem seg links. */
pmem_pool->SegPrevPtr = pmem_seg_prev;
pmem_pool->SegNextPtr = pmem_seg_next;
if (pmem_seg_prev != (MEM_POOL *)0) { /* Update prev mem seg link. */
pmem_seg_prev->SegNextPtr = pmem_pool;
} else {
Mem_PoolTbl = pmem_pool; /* Update mem tbl. */
}
if (pmem_seg_next != (MEM_POOL *)0) { /* Update next mem seg link. */
pmem_seg_next->SegPrevPtr = pmem_pool;
}
} else { /* Add mem pool into mem seg. */
/* Update cur mem pool links. */
pmem_pool_next = pmem_seg->PoolNextPtr;
pmem_pool->PoolPrevPtr = pmem_seg;
pmem_pool->PoolNextPtr = pmem_pool_next;
pmem_seg->PoolNextPtr = pmem_pool; /* Update prev mem pool link. */
if (pmem_pool_next != (MEM_POOL *)0) { /* Update next mem pool link. */
pmem_pool_next->PoolPrevPtr = pmem_pool;
}
}
/* ----------------- CFG MEM POOL ----------------- */
pmem_pool->Type = (LIB_MEM_TYPE ) LIB_MEM_TYPE_POOL;
pmem_pool->SegHeadPtr = (MEM_POOL *) pmem_seg;
pmem_pool->PoolAddrStart = (void *) pmem_addr_pool;
pmem_pool->PoolAddrEnd = (void *)(pmem_addr_pool + size_tot_pool - 1);
pmem_pool->PoolPtrs = (void **) ppool_ptr;
pmem_pool->PoolSize = (CPU_SIZE_T ) size_tot_pool;
pmem_pool->BlkAlign = (CPU_SIZE_T ) blk_align;
pmem_pool->BlkSize = (CPU_SIZE_T ) blk_size;
pmem_pool->BlkNbr = (MEM_POOL_BLK_QTY) blk_nbr;
pmem_pool->BlkIx = (MEM_POOL_IX ) blk_nbr;
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolBlkGetNbrAvail()
*
* Description : Get memory pools remaining number of blocks available to allocate.
*
* Argument(s) : pmem_pool Pointer to a memory pool structure.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory pool available number of blocks
* successfully returned.
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
*
* Return(s) : Remaining memory pool blocks (see Note #1), if NO error(s).
*
* 0, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : (1) (a) Mem_PoolBlkGetNbrAvail() ONLY supports non-heap memory pools.
* (b) Mem_HeapGetSizeRem()/Mem_SegGetSizeRem() should be used for heap memory pool/segment.
*
* (2) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
MEM_POOL_BLK_QTY Mem_PoolBlkGetNbrAvail (MEM_POOL *pmem_pool,
LIB_ERR *perr)
{
MEM_POOL_BLK_QTY nbr_blk_rem;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
/* --------------- VALIDATE RTN ERR PTR --------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION(0u);
}
/* ---------------- VALIDATE MEM POOL ----------------- */
if (pmem_pool == (MEM_POOL *)0) { /* Validate mem ptr. */
*perr = LIB_MEM_ERR_NULL_PTR;
return (0u);
}
#endif
CPU_CRITICAL_ENTER();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
switch (pmem_pool->Type) { /* Validate mem pool type. */
case LIB_MEM_TYPE_POOL:
break;
case LIB_MEM_TYPE_NONE:
case LIB_MEM_TYPE_HEAP:
default:
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return (0u); /* Prevent 'break NOT reachable' compiler warning. */
}
#endif
/* --------- GET REM'ING MEM POOL NBR BLK(S) ---------- */
nbr_blk_rem = pmem_pool->BlkIx;
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
return (nbr_blk_rem);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolBlkGet()
*
* Description : Get a memory block from memory pool.
*
* Argument(s) : pmem_pool Pointer to memory pool to get memory block from.
*
* size Size of requested memory (in octets).
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory block successfully returned.
* LIB_MEM_ERR_POOL_EMPTY NO memory blocks available in memory pool.
*
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
* LIB_MEM_ERR_INVALID_BLK_SIZE Invalid memory pool block size requested.
* LIB_MEM_ERR_INVALID_BLK_IX Invalid memory pool block index.
*
* Return(s) : Pointer to memory block, if NO error(s).
*
* Pointer to NULL, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : (1) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
void *Mem_PoolBlkGet (MEM_POOL *pmem_pool,
CPU_SIZE_T size,
LIB_ERR *perr)
{
void *pmem_blk;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------- VALIDATE RTN ERR PTR ------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION((void *)0);
}
#endif
/* ------------ VALIDATE MEM POOL GET ------------- */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_pool == (MEM_POOL *)0) { /* Validate mem ptr. */
*perr = LIB_MEM_ERR_NULL_PTR;
return ((void *)0);
}
if (size < 1) { /* Validate req'd size as non-NULL. */
*perr = LIB_MEM_ERR_INVALID_BLK_SIZE;
return ((void *)0);
}
#endif
CPU_CRITICAL_ENTER();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_pool->Type != LIB_MEM_TYPE_POOL) { /* Validate mem pool type. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return ((void *)0);
}
if (size > pmem_pool->BlkSize) { /* Validate req'd size <= mem pool blk size. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_SIZE;
return ((void *)0);
}
#endif
(void)&size; /* Prevent possible 'variable unused' warning. */
if (pmem_pool->BlkIx < 1) { /* Validate mem pool as NOT empty. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_POOL_EMPTY;
return ((void *)0);
}
if (pmem_pool->BlkIx > pmem_pool->BlkNbr) { /* Validate mem pool ix NOT corrupt. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_IX;
return ((void *)0);
}
/* ------------ GET MEM BLK FROM POOL ------------- */
pmem_pool->BlkIx--;
pmem_blk = pmem_pool->PoolPtrs[pmem_pool->BlkIx];
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
return (pmem_blk);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolBlkGetUsedAtIx()
*
* Description : Get a used memory block from memory pool, by index.
*
* Argument(s) : pmem_pool Pointer to memory pool to get memory block from.
*
* used_ix Index of the used memory block to get.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory block successfully returned.
* LIB_MEM_ERR_POOL_FULL All memory blocks available in memory pool.
*
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool' passed a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
* LIB_MEM_ERR_INVALID_BLK_IX Invalid memory pool block index.
*
* Return(s) : Pointer to memory block, if NO error(s).
*
* Pointer to NULL, otherwise.
*
* Caller(s) : Application.
*
* Note(s) : (1) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*
* (2) The returned index can be altered when Mem_PoolBlkFree() is called. This index must
* only be used in conjunction with Mem_PoolBlkGetUsedAtIx() if holding a proper
* lock to avoid the index to be modified.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
void *Mem_PoolBlkGetUsedAtIx (MEM_POOL *pmem_pool,
MEM_POOL_IX used_ix,
LIB_ERR *perr)
{
MEM_POOL_IX blk_ix;
void *pmem_blk;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------- VALIDATE RTN ERR PTR ------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION((void *)0);
}
#endif
/* ------------ VALIDATE MEM POOL GET ------------- */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_pool == (MEM_POOL *)0) { /* Validate mem ptr. */
*perr = LIB_MEM_ERR_NULL_PTR;
return ((void *)0);
}
#endif
CPU_CRITICAL_ENTER();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_pool->Type != LIB_MEM_TYPE_POOL) { /* Validate mem pool type. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return ((void *)0);
}
if (pmem_pool->BlkIx >= pmem_pool->BlkNbr) { /* Validate mem pool as NOT full. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_IX;
return ((void *)0);
}
#endif
blk_ix = pmem_pool->BlkNbr - used_ix - 1u;
if (blk_ix >= pmem_pool->BlkNbr) { /* Validate ix range. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_IX;
return ((void *)0);
}
if (blk_ix < pmem_pool->BlkIx) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_IX;
return ((void *)0);
}
/* ------------ GET MEM BLK FROM POOL ------------- */
pmem_blk = pmem_pool->PoolPtrs[blk_ix];
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
return (pmem_blk);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolBlkFree()
*
* Description : Free a memory block to memory pool.
*
* Argument(s) : pmem_pool Pointer to memory pool to free memory block.
*
* pmem_blk Pointer to memory block address to free.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory block successfully freed.
* LIB_MEM_ERR_POOL_FULL ALL memory blocks already available in
* memory pool.
*
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool'/'pmem_blk' passed
* a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
* LIB_MEM_ERR_INVALID_BLK_ADDR Invalid memory block address.
* LIB_MEM_ERR_INVALID_BLK_ADDR_IN_POOL Memory block address already
* in memory pool.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
void Mem_PoolBlkFree (MEM_POOL *pmem_pool,
void *pmem_blk,
LIB_ERR *perr)
{
void *p_addr;
CPU_BOOLEAN addr_valid;
MEM_POOL_IX i;
CPU_SR_ALLOC();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------- VALIDATE RTN ERR PTR ------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION(;);
}
#endif
/* ------------ VALIDATE MEM POOL FREE ------------ */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* Validate mem ptrs. */
if (pmem_pool == (MEM_POOL *)0) {
*perr = LIB_MEM_ERR_NULL_PTR;
return;
}
if (pmem_blk == (void *)0) {
*perr = LIB_MEM_ERR_NULL_PTR;
return;
}
#endif
CPU_CRITICAL_ENTER();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_pool->Type != LIB_MEM_TYPE_POOL) { /* Validate mem pool type. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return;
}
addr_valid = Mem_PoolBlkIsValidAddr(pmem_pool, pmem_blk); /* Validate mem blk as valid pool blk addr. */
if (addr_valid != DEF_OK) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_ADDR;
return;
}
for (i = 0u; i < pmem_pool->BlkIx; i++) { /* Validate mem blk NOT already in pool. */
if (pmem_blk == pmem_pool->PoolPtrs[i]) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_ADDR_IN_POOL;
return;
}
}
#endif
if (pmem_pool->BlkIx >= pmem_pool->BlkNbr) { /* Validate mem pool NOT already full. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_POOL_FULL;
return;
}
/* ------------- FREE MEM BLK TO POOL ------------- */
addr_valid = DEF_NO;
for (i = pmem_pool->BlkIx; i < pmem_pool->BlkNbr; i++) { /* Find ix of mem blk to free. */
p_addr = pmem_pool->PoolPtrs[i];
if (p_addr == pmem_blk) {
addr_valid = DEF_YES;
break;
}
}
/* Swap addr of mem blk to free in tbl. */
if (addr_valid == DEF_YES) {
pmem_pool->PoolPtrs[i] = pmem_pool->PoolPtrs[pmem_pool->BlkIx];
} else {
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return;
#endif
}
/* Free mem blk. */
pmem_pool->PoolPtrs[pmem_pool->BlkIx] = pmem_blk;
pmem_pool->BlkIx++;
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_PoolBlkIxGet()
*
* Description : Get temporary index of a memory block in a memory pool.
*
* Argument(s) : pmem_pool Pointer to memory pool.
*
* pmem_blk Pointer to memory block to get index for.
*
* perr Pointer to variable that will receive the return error code from this function :
*
* LIB_MEM_ERR_NONE Memory block successfully freed.
* LIB_MEM_ERR_POOL_FULL ALL memory blocks already available in
* memory pool.
*
* LIB_MEM_ERR_NULL_PTR Argument 'pmem_pool'/'pmem_blk' passed
* a NULL pointer.
* LIB_MEM_ERR_INVALID_POOL Invalid memory pool type.
* LIB_MEM_ERR_INVALID_BLK_ADDR Invalid memory block address.
* LIB_MEM_ERR_INVALID_BLK_ADDR_IN_POOL Memory block address already
* in memory pool.
*
* Return(s) : Index of the memory block.
*
* Caller(s) : Application.
*
* Note(s) : (1) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*
* (2) The returned index can be altered when Mem_PoolBlkFree() is called. This index must
* only be used in conjunction with Mem_PoolBlkGetUsedAtIx() if holding a proper
* lock to avoid the index to be modified.
*********************************************************************************************************
*/
/*$PAGE*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
MEM_POOL_IX Mem_PoolBlkIxGet (MEM_POOL *pmem_pool,
void *pmem_blk,
LIB_ERR *perr)
{
void *p_addr;
CPU_BOOLEAN addr_valid;
MEM_POOL_IX i;
MEM_POOL_IX pool_ix;
MEM_POOL_IX invalid_ix;
CPU_SR_ALLOC();
invalid_ix = DEF_GET_U_MAX_VAL(MEM_POOL_IX);
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* ------------- VALIDATE RTN ERR PTR ------------- */
if (perr == (LIB_ERR *)0) {
CPU_SW_EXCEPTION(invalid_ix);
}
#endif
/* ------------ VALIDATE MEM POOL FREE ------------ */
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* Validate mem ptrs. */
if (pmem_pool == (MEM_POOL *)0) {
*perr = LIB_MEM_ERR_NULL_PTR;
return (invalid_ix);
}
if (pmem_blk == (void *)0) {
*perr = LIB_MEM_ERR_NULL_PTR;
return (invalid_ix);
}
#endif
CPU_CRITICAL_ENTER();
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_pool->Type != LIB_MEM_TYPE_POOL) { /* Validate mem pool type. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return(invalid_ix);
}
addr_valid = Mem_PoolBlkIsValidAddr(pmem_pool, pmem_blk); /* Validate mem blk as valid pool blk addr. */
if (addr_valid != DEF_OK) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_ADDR;
return (invalid_ix);
}
for (i = 0u; i < pmem_pool->BlkIx; i++) { /* Validate mem blk NOT already in pool. */
if (pmem_blk == pmem_pool->PoolPtrs[i]) {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_BLK_ADDR_IN_POOL;
return (invalid_ix);
}
}
#endif
if (pmem_pool->BlkIx >= pmem_pool->BlkNbr) { /* Validate mem pool NOT full. */
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_POOL_FULL;
return (invalid_ix);
}
addr_valid = DEF_NO;
for (i = pmem_pool->BlkIx; i < pmem_pool->BlkNbr; i++) { /* Find ix of mem blk. */
p_addr = pmem_pool->PoolPtrs[i];
if (p_addr == pmem_blk) {
addr_valid = DEF_YES;
break;
}
}
/* Return ix of mem blk in tbl. */
if (addr_valid == DEF_YES) {
pool_ix = pmem_pool->BlkNbr - 1 - i;
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_NONE;
return (pool_ix);
} else {
CPU_CRITICAL_EXIT();
*perr = LIB_MEM_ERR_INVALID_POOL;
return (invalid_ix);
}
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
*********************************************************************************************************
* LOCAL FUNCTIONS
*********************************************************************************************************
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* Mem_PoolBlkIsValidAddr()
*
* Description : Calculates if a given memory block address is valid for the memory pool.
*
* Argument(s) : pmem_pool Pointer to memory pool structure to validate memory block address.
* --------- Argument validated in Mem_PoolBlkFree().
*
* pmem_blk Pointer to memory block address to validate.
* -------- Argument validated in Mem_PoolBlkFree().
*
* Return(s) : DEF_YES, if valid memory pool block address.
*
* DEF_NO, otherwise.
*
* Caller(s) : Mem_PoolBlkFree().
*
* Note(s) : none.
*********************************************************************************************************
*/
#if ((LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED) && \
(LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED))
static CPU_BOOLEAN Mem_PoolBlkIsValidAddr (MEM_POOL *pmem_pool,
void *pmem_blk)
{
CPU_INT08U *ppool_addr_first;
void *ppool_addr_start;
void *ppool_addr_end;
CPU_SIZE_T align_offset;
CPU_SIZE_T blk_align;
CPU_SIZE_T blk_align_offset;
CPU_SIZE_T blk_size;
CPU_SIZE_T mem_align;
CPU_SIZE_T mem_align_offset;
CPU_SIZE_T mem_diff;
CPU_BOOLEAN addr_valid;
ppool_addr_start = pmem_pool->PoolAddrStart;
ppool_addr_end = pmem_pool->PoolAddrEnd;
if ((pmem_blk < ppool_addr_start) ||
(pmem_blk > ppool_addr_end)) {
return (DEF_NO);
}
blk_align = (CPU_SIZE_T)pmem_pool->BlkAlign;
align_offset = (CPU_SIZE_T)((CPU_ADDR)ppool_addr_start % blk_align);
if (align_offset != 0u) {
mem_align_offset = blk_align - align_offset;
} else {
mem_align_offset = 0u;
}
blk_size = pmem_pool->BlkSize;
align_offset = blk_size % blk_align;
if (align_offset != 0u) {
blk_align_offset = blk_align - align_offset;
} else {
blk_align_offset = 0u;
}
ppool_addr_first = (CPU_INT08U *)((CPU_INT08U *)ppool_addr_start + mem_align_offset);
mem_diff = (CPU_SIZE_T )((CPU_INT08U *)pmem_blk - ppool_addr_first);
mem_align = (CPU_SIZE_T )( blk_size + blk_align_offset);
addr_valid = ((mem_diff % mem_align) == 0u) ? DEF_YES : DEF_NO;
return (addr_valid);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_SegCalcTotSize()
*
* Description : (1) Calculates total memory segment size for number of blocks with specific size & alignment :
*
*
* ----- ====================== ---
* ^ Mem Addr ---> | / / / / / / | ^
* | (see Note #1a) | / / / / / / /| | Mem Align Offset
* | |/ / / / / / / | | (see Notes #1e & #2a)
* | | / / / / / / | v
* | ====================== ---
* | | | ^
* | | | |
* | | Mem Blk #1 | | Blk Size
* | | | | (see Note #1c)
* | | | v
* | ---------------------- ---
* | | / / / / / / | ^
* | | / / / / / / /| | Blk Align Offset
* | |/ / / / / / / | | (see Notes #1f & #2b)
* | | / / / / / / | v
* | ====================== ---
* | . |
* Total Size | . |
* (see Note #2c) | . |
* ====================== ---
* | | | ^
* | | | |
* | | Mem Blk #N - 1 | | Blk Size
* | | | | (see Note #1c)
* | | | v
* | ---------------------- ---
* | | / / / / / / | ^
* | | / / / / / / /| | Blk Align Offset
* | |/ / / / / / / | | (see Notes #1f & #2b)
* | | / / / / / / | v
* | ====================== ---
* | | | ^
* | | | |
* | | Mem Blk #N | | Blk Size
* | | | | (see Note #1c)
* v | | v
* ----- ====================== ---
*
* where
*
* (a) Mem Addr Memory address of the beginning of the memory block ('pmem_addr')
*
* (b) N Number of memory blocks to allocate ('blk_nbr')
*
* (c) Blk Size Size of memory block to allocate ('blk_size')
*
* (d) Align Required block memory alignment ('blk_align')
*
* (e) Mem Align Offset Offset required to align first memory block
*
* (f) Blk Align Offset Offset required to align every memory block
*
*
* (2) The total size is calculated based on the following equations :
*
* { (1) Align - (Mem Addr % Align) , if memory address is not aligned
* (a) Mem Align Offset = {
* { (2) 0 , if memory address is aligned
*
*
* { (1) Align - (Size % Align) , if memory block is not aligned
* (b) Blk Align Offset = {
* { (2) 0 , if memory block is aligned
*
*
* (c) Total Size = Mem Align Offset
* + ((Blk Size + Blk Align Offset) * (N - 1))
* + Blk Size
*
*
* Argument(s) : pmem_addr Memory address of the beginning of the memory block.
*
* blk_nbr Number of memory blocks to allocate.
* ------- Argument checked in Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* blk_size Size of memory block to allocate.
* -------- Argument checked in Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* blk_align Required block word-boundary memory alignment (in octets).
* --------- Argument checked in Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* Return(s) : Total size of memory segment used to allocate the number of blocks, if NO error(s).
*
* 0, otherwise.
*$PAGE*
* Caller(s) : Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* Note(s) : none.
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
static CPU_SIZE_T Mem_SegCalcTotSize (void *pmem_addr,
MEM_POOL_BLK_QTY blk_nbr,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align)
{
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
CPU_SIZE_T blk_size_mem_aligned;
CPU_SIZE_T blk_size_aligned;
CPU_SIZE_T blk_size_aligned_nbr;
CPU_SIZE_T blk_size_tot;
#endif
CPU_SIZE_T align_offset;
CPU_SIZE_T mem_align_offset;
CPU_SIZE_T blk_align_offset;
CPU_SIZE_T size_tot;
/* Calc mem align (see Note #2a). */
align_offset = (CPU_ADDR)pmem_addr % blk_align;
if (align_offset != 0u) {
mem_align_offset = blk_align - align_offset;
} else {
mem_align_offset = 0u;
}
/* Calc blk align (see Note #2b). */
align_offset = blk_size % blk_align;
if (align_offset != 0u) {
blk_align_offset = blk_align - align_offset;
} else {
blk_align_offset = 0u;
}
/* Calc tot size (see Note #2c). */
size_tot = mem_align_offset + ((blk_size + blk_align_offset) * ((CPU_SIZE_T)blk_nbr - 1)) + blk_size;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED) /* Chk ovf of tot size = A + [(B + C) * D] + E */
blk_size_mem_aligned = mem_align_offset + blk_size; /* Chk ovf of A + E : */
if ((blk_size_mem_aligned < mem_align_offset) ||
(blk_size_mem_aligned < blk_size)) {
return (0u);
}
if (blk_nbr > 1) {
blk_size_aligned = blk_size + blk_align_offset;
if ((blk_size_aligned < blk_align_offset) || /* Chk ovf of (B + C) : */
(blk_size_aligned < blk_size)) {
return (0u);
}
blk_size_aligned_nbr = blk_size_aligned * ((CPU_SIZE_T)blk_nbr - 1);
if ((blk_size_aligned_nbr < blk_size_aligned) || /* Chk ovf of [(B + C) * D] : */
(blk_size_aligned_nbr < blk_align_offset) ||
(blk_size_aligned_nbr < blk_size)) {
return (0u);
}
blk_size_tot = blk_size_aligned_nbr + blk_size;
if ((blk_size_tot < blk_size_aligned_nbr) || /* Chk ovf of [(B + C) * D] + E : */
(blk_size_tot < blk_size)) {
return (0u);
}
if ((size_tot < blk_size_mem_aligned) || /* Chk ovf of A + [(B + C) * D] + E : */
(size_tot < blk_size_aligned_nbr) ||
(size_tot < blk_size_tot)) {
return (0u);
}
}
#endif
return (size_tot);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* Mem_SegAlloc()
*
* Description : Allocates memory from specific segment.
*
* Argument(s) : pmem_pool Pointer to memory pool structure containing segment information.
* --------- Argument validated in Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* size Size of memory to allocate.
* ---- Argument validated in Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* align Required starting word-boundary memory alignment (in octets).
* ----- Argument validated in Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* Return(s) : Pointer to allocated memory, if NO error(s).
*
* Pointer to NULL, otherwise.
*
* Caller(s) : Mem_HeapAlloc(),
* Mem_PoolCreate().
*
* Note(s) : (1) Allocated memory from the specific segment is NEVER freed after allocation.
*
* (2) 'pmem_pool' variables MUST ALWAYS be accessed exclusively in critical sections.
*
* (a) However, this function is already called within critical sections.
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
static void *Mem_SegAlloc (MEM_POOL *pmem_pool,
CPU_SIZE_T size,
CPU_SIZE_T align)
{
CPU_INT08U *pmem_addr;
CPU_INT08U *pmem_addr_next;
CPU_SIZE_T mem_align;
CPU_SIZE_T align_offset;
CPU_SIZE_T size_tot;
pmem_addr = (CPU_INT08U *)pmem_pool->SegAddrNextAvail;
mem_align = (CPU_SIZE_T)((CPU_ADDR)pmem_addr % align); /* Calc mem align. */
if (mem_align != 0u) {
align_offset = align - mem_align;
} else {
align_offset = 0u;
}
size_tot = align_offset + size;
if (size_tot > pmem_pool->SegSizeRem) { /* If insufficient mem seg size rem, ... */
return ((void *)0); /* ... rtn NULL. */
}
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if ((size_tot < align_offset) || /* If size ovf, ... */
(size_tot < size)) {
return ((void *)0); /* ... rtn NULL. */
}
#endif
pmem_addr_next = pmem_addr + size_tot;
#if (LIB_MEM_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
if (pmem_addr_next < pmem_addr) { /* If addr ovf, ... */
return ((void *)0); /* ... rtn NULL. */
}
#endif
pmem_addr += align_offset; /* Align mem addr. */
pmem_pool->SegAddrNextAvail = (void *)pmem_addr_next; /* Adv next avail addr. */
pmem_pool->SegSizeRem -= (CPU_SIZE_T)size_tot; /* Adj rem mem seg size. */
return ((void *)pmem_addr);
}
#endif